Menu Close

sin-x-cos-x-dx-




Question Number 52893 by dwdkswd last updated on 14/Jan/19
∫sin x×cos x dx
$$\int\mathrm{sin}\:{x}×\mathrm{cos}\:{x}\:{dx} \\ $$
Answered by MJS last updated on 14/Jan/19
∫sin x cos x dx=(1/2)∫sin 2x dx=−(1/4)cos 2x +C=  =(1/4)−(1/2)cos^2  x +C=−(1/2)cos^2  x +C
$$\int\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sin}\:\mathrm{2}{x}\:{dx}=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{x}\:+{C}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \:{x}\:+{C}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{\mathrm{2}} \:{x}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *