Menu Close

sin-x-cos-x-sin-2x-dx-




Question Number 116501 by bemath last updated on 04/Oct/20
∫ ((sin x−cos x)/( (√(sin 2x)))) dx ?
$$\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx}\:? \\ $$
Answered by TANMAY PANACEA last updated on 04/Oct/20
(d/dx)(sinx+cosx)=cosx−sinx  ∫((−d(sinx+cosx))/( (√(1−1+sin2x))))  ∫((−d(sinx+cosx))/( (√((sinx+cosx)^2 −1))))  ∫(dt/( (√(t^2 −1)))) formula
$$\frac{{d}}{{dx}}\left({sinx}+{cosx}\right)={cosx}−{sinx} \\ $$$$\int\frac{−{d}\left({sinx}+{cosx}\right)}{\:\sqrt{\mathrm{1}−\mathrm{1}+{sin}\mathrm{2}{x}}} \\ $$$$\int\frac{−{d}\left({sinx}+{cosx}\right)}{\:\sqrt{\left({sinx}+{cosx}\right)^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\int\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:{formula} \\ $$
Commented by bemath last updated on 04/Oct/20
= −ln ∣t+(√(t^2 −1)) ∣ + c   = −ln ∣sin x+cos x+(√(sin 2x)) ∣ + c ?
$$=\:−\mathrm{ln}\:\mid\mathrm{t}+\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\:\mid\:+\:\mathrm{c}\: \\ $$$$=\:−\mathrm{ln}\:\mid\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{2x}}\:\mid\:+\:\mathrm{c}\:? \\ $$
Commented by MJS_new last updated on 04/Oct/20
yes
$$\mathrm{yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *