Menu Close

sin-x-sin-5x-sin-3x-find-the-angle-that-satisfied-the-equestion-




Question Number 43346 by peter frank last updated on 10/Sep/18
sin x−sin 5x=sin 3x find the angle  that satisfied the equestion
$$\mathrm{sin}\:{x}−\mathrm{sin}\:\mathrm{5}{x}=\mathrm{sin}\:\mathrm{3}{x}\:{find}\:{the}\:{angle} \\ $$$${that}\:{satisfied}\:{the}\:{equestion} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
sinx=sin5x+sin3x  sinx=2sin4x.cosx  sinx=2(2sin2xcos2x)cosx  sinx=4(2sinxcosx)cos2xcosx  sinx−8sinxcos^2 x.cos2x=0  sinx(1−8cos^2 x.cos2x)=0  one solution  sinx=0=sinnΠ  x=nΠ  1−8cos^2 x.cos2x=0  4(2cos^2 x)cos2x=1  4(1+cos2x)cos2x=1  a=cos2x  4(1+a)a=1  4a+4a^2 −1=0  4a^2 +4a−1=0  a=((−4±(√(16−4×4×(−1))) )/(2×4))  a=((−4±4(√2))/(2×4))  a=((4(√2) −4)/(2×4))  and ((−4(√2) −4)/(2×4))  a=(((√2) −1)/2)  and ((−((√2) +1))/2)←this not feasible soln      1≥cos2x≥−1   so cos2x can not be ((−((√2) +1))/2)  cos2x=(((√2) −1)/2)≈cos78^o   x≈39^o   recheck  sinx−sin5x=sin3x  LHS  sin39^o −sin(195^o )  ≈0.89        RHS   sin(117^o )  ≈0.89
$${sinx}={sin}\mathrm{5}{x}+{sin}\mathrm{3}{x} \\ $$$${sinx}=\mathrm{2}{sin}\mathrm{4}{x}.{cosx} \\ $$$${sinx}=\mathrm{2}\left(\mathrm{2}{sin}\mathrm{2}{xcos}\mathrm{2}{x}\right){cosx} \\ $$$${sinx}=\mathrm{4}\left(\mathrm{2}{sinxcosx}\right){cos}\mathrm{2}{xcosx} \\ $$$${sinx}−\mathrm{8}{sinxcos}^{\mathrm{2}} {x}.{cos}\mathrm{2}{x}=\mathrm{0} \\ $$$${sinx}\left(\mathrm{1}−\mathrm{8}{cos}^{\mathrm{2}} {x}.{cos}\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${one}\:{solution} \\ $$$${sinx}=\mathrm{0}={sinn}\Pi \\ $$$${x}={n}\Pi \\ $$$$\mathrm{1}−\mathrm{8}{cos}^{\mathrm{2}} {x}.{cos}\mathrm{2}{x}=\mathrm{0} \\ $$$$\mathrm{4}\left(\mathrm{2}{cos}^{\mathrm{2}} {x}\right){cos}\mathrm{2}{x}=\mathrm{1} \\ $$$$\mathrm{4}\left(\mathrm{1}+{cos}\mathrm{2}{x}\right){cos}\mathrm{2}{x}=\mathrm{1} \\ $$$${a}={cos}\mathrm{2}{x} \\ $$$$\mathrm{4}\left(\mathrm{1}+{a}\right){a}=\mathrm{1} \\ $$$$\mathrm{4}{a}+\mathrm{4}{a}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{4}{a}^{\mathrm{2}} +\mathrm{4}{a}−\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{−\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{4}×\mathrm{4}×\left(−\mathrm{1}\right)}\:}{\mathrm{2}×\mathrm{4}} \\ $$$${a}=\frac{−\mathrm{4}\pm\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{2}×\mathrm{4}} \\ $$$${a}=\frac{\mathrm{4}\sqrt{\mathrm{2}}\:−\mathrm{4}}{\mathrm{2}×\mathrm{4}}\:\:{and}\:\frac{−\mathrm{4}\sqrt{\mathrm{2}}\:−\mathrm{4}}{\mathrm{2}×\mathrm{4}} \\ $$$${a}=\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{2}}\:\:{and}\:\frac{−\left(\sqrt{\mathrm{2}}\:+\mathrm{1}\right)}{\mathrm{2}}\leftarrow{this}\:{not}\:{feasible}\:{soln} \\ $$$$\:\:\:\:\mathrm{1}\geqslant{cos}\mathrm{2}{x}\geqslant−\mathrm{1}\: \\ $$$${so}\:{cos}\mathrm{2}{x}\:{can}\:{not}\:{be}\:\frac{−\left(\sqrt{\mathrm{2}}\:+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${cos}\mathrm{2}{x}=\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{2}}\approx{cos}\mathrm{78}^{{o}} \\ $$$${x}\approx\mathrm{39}^{{o}} \\ $$$${recheck} \\ $$$${sinx}−{sin}\mathrm{5}{x}={sin}\mathrm{3}{x} \\ $$$${LHS} \\ $$$${sin}\mathrm{39}^{{o}} −{sin}\left(\mathrm{195}^{{o}} \right) \\ $$$$\approx\mathrm{0}.\mathrm{89} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${RHS}\: \\ $$$${sin}\left(\mathrm{117}^{{o}} \right) \\ $$$$\approx\mathrm{0}.\mathrm{89} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *