Question Number 15661 by arnabpapu550@gmail.com last updated on 12/Jun/17
$$\int\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$
Commented by arnabpapu550@gmail.com last updated on 13/Jun/17
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by arnabpapu550@gmail.com last updated on 13/Jun/17
$$\mathrm{In}\:\mathrm{which}\:\mathrm{time}\:\mathrm{I}\:\mathrm{can}\:\mathrm{find}\:\mathrm{you}\:\mathrm{here}\:\mathrm{sir}? \\ $$
Commented by mrW1 last updated on 12/Jun/17
$$=\mathrm{Si}\left(\mathrm{x}\right)+\mathrm{C} \\ $$$$\mathrm{sine}\:\mathrm{integral} \\ $$
Commented by prakash jain last updated on 13/Jun/17
$$\mathrm{To}\:\mathrm{Arnab} \\ $$$$\frac{\mathrm{sin}\:{x}}{{x}}\:\mathrm{integral}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{expressed} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{elementary}\:\mathrm{function} \\ $$$$\mathrm{The}\:\mathrm{function}\:\frac{\mathrm{sin}\:{x}}{{x}}\:\mathrm{is}\:\mathrm{called} \\ $$$$\mathrm{sinc}\:\mathrm{function} \\ $$$$\mathrm{sinc}\left({x}\right)=\frac{\mathrm{sin}\:{x}}{{x}} \\ $$$$\mathrm{and}\:\mathrm{it}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{sine} \\ $$$$\mathrm{integral}\:\left(\mathrm{Si}\right)\:\mathrm{and}\:\mathrm{denoted}\:\mathrm{as} \\ $$$$\mathrm{Si}\:\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \frac{\mathrm{sin}\:{t}}{{t}}{dt} \\ $$
Commented by arnabpapu550@gmail.com last updated on 12/Jun/17
$$\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand}. \\ $$
Commented by mrW1 last updated on 12/Jun/17
$$\mathrm{Definition}\:\mathrm{Si}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{x}} \:\frac{\mathrm{sin}\:\mathrm{t}}{\mathrm{t}}\:\mathrm{dt} \\ $$