Question Number 161698 by cortano last updated on 21/Dec/21
$$\:\:\mathrm{sin}\:\left({x}+{y}\right)=\mathrm{sin}\:{x}+\mathrm{sin}\:{y} \\ $$
Commented by Rasheed.Sindhi last updated on 21/Dec/21
$$\left({x},\mathrm{0}\right),\left(\mathrm{0},{y}\right),\left(\mathrm{0},\mathrm{0}\right)\:{are}\:{obvious}\:{solutions} \\ $$
Commented by cortano last updated on 21/Dec/21
$${and}\:\begin{cases}{{x}=\mathrm{2}{n}\pi}\\{{y}=\mathrm{2}{n}\pi}\end{cases} \\ $$
Commented by Rasheed.Sindhi last updated on 21/Dec/21
$$\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right)=\left(\mathrm{0}+\mathrm{2}{n}\pi,\mathrm{0}+\mathrm{2}{n}\pi\right) \\ $$$$=\left(\mathrm{2}{n}\pi,\mathrm{2}{n}\pi\right) \\ $$$${Actually}\:{in}\:{general} \\ $$$$\left({x},{y}\right)=\left(\mathrm{2}{m}\pi,\mathrm{2}{n}\pi\right)\:{where}\:{m},{n}\in\mathbb{Z} \\ $$
Commented by mr W last updated on 21/Dec/21
$${following}\:{solutions}\:{i}\:{think} \\ $$$$\begin{cases}{{x}=\mathrm{2}{k}\pi}\\{{y}={any}\:{value}}\end{cases} \\ $$$$\begin{cases}{{x}={any}\:{value}}\\{{y}=\mathrm{2}{k}\pi}\end{cases} \\ $$$$\left\{{x}+{y}=\mathrm{2}{k}\pi\right. \\ $$
Commented by mr W last updated on 21/Dec/21
$${yes},\:{thanks}! \\ $$$${i}\:{had}\:{a}\:{mistake}\:{in}\:{my}\:{working}.{now} \\ $$$${it}'{s}\:{fixed}. \\ $$$${y}=−{x}\:{is}\:{included}\:{in}\:{case}\:\mathrm{3}. \\ $$
Commented by Rasheed.Sindhi last updated on 21/Dec/21
$${Also} \\ $$$${y}=−{x} \\ $$
Answered by mr W last updated on 21/Dec/21
$$\mathrm{sin}\:{x}\:\mathrm{cos}\:{y}+\mathrm{cos}\:{x}\:\mathrm{sin}\:{y}=\mathrm{sin}\:{x}+\mathrm{sin}\:{y} \\ $$$$\mathrm{sin}\:{x}\left(\mathrm{1}−\mathrm{cos}\:{y}\right)=\mathrm{sin}\:{y}\:\left(\mathrm{cos}\:{x}−\mathrm{1}\right) \\ $$$$\mathrm{2sin}\:\frac{{x}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\left(\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{{y}}{\mathrm{2}}\right)=\mathrm{2}\:\mathrm{sin}\:\frac{{y}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{y}}{\mathrm{2}}\:\left(−\mathrm{2sin}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{y}}{\mathrm{2}}+\mathrm{cos}\:\frac{{y}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\right)\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\mathrm{sin}\:\frac{{y}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\frac{{x}+{y}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{y}}{\mathrm{2}}=\mathrm{0} \\ $$$${case}\:\mathrm{1}:\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}}=\mathrm{0} \\ $$$$\begin{cases}{\frac{{x}}{\mathrm{2}}={k}\pi\:\Rightarrow{x}=\mathrm{2}{k}\pi}\\{{y}={any}\:{value}}\end{cases} \\ $$$${case}\:\mathrm{2}:\:\mathrm{sin}\:\frac{{y}}{\mathrm{2}}=\mathrm{0} \\ $$$$\begin{cases}{\frac{{y}}{\mathrm{2}}={k}\pi\:\Rightarrow{y}=\mathrm{2}{k}\pi}\\{{x}={any}\:{value}}\end{cases} \\ $$$${case}\:\mathrm{3}:\:\mathrm{sin}\:\frac{{x}+{y}}{\mathrm{2}}=\mathrm{0} \\ $$$$\frac{{x}+{y}}{\mathrm{2}}={k}\pi \\ $$$${x}+{y}=\mathrm{2}{k}\pi \\ $$
Answered by Rasheed.Sindhi last updated on 22/Dec/21
$$\:\:\mathrm{sin}\:\left({x}+{y}\right)=\mathrm{sin}\:{x}+\mathrm{sin}\:{y} \\ $$$$\begin{array}{|c|}{\mathrm{sin}\:{a}+\mathrm{sin}\:{b}=\mathrm{2sin}\frac{{a}+{b}}{\mathrm{2}}\:\mathrm{cos}\frac{{a}−{b}}{\mathrm{2}}}\\\hline\end{array} \\ $$$$\:\:\mathrm{sin2}\left(\frac{{x}+{y}}{\mathrm{2}}\right)=\mathrm{2sin}\frac{{x}+{y}}{\mathrm{2}}\:\mathrm{cos}\frac{{x}−{y}}{\mathrm{2}}\:\: \\ $$$$\:\mathrm{2sin}\frac{{x}+{y}}{\mathrm{2}}\mathrm{cos}\frac{{x}+{y}}{\mathrm{2}}−\mathrm{2sin}\frac{{x}+{y}}{\mathrm{2}}\:\mathrm{cos}\frac{{x}−{y}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{2sin}\frac{{x}+{y}}{\mathrm{2}}\left(\mathrm{cos}\frac{{x}+{y}}{\mathrm{2}}−\mathrm{cos}\frac{{x}−{y}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\mathrm{sin}\frac{{x}+{y}}{\mathrm{2}}=\mathrm{0}\mid\mathrm{cos}\frac{{x}+{y}}{\mathrm{2}}−\mathrm{cos}\frac{{x}−{y}}{\mathrm{2}}=\mathrm{0} \\ $$$$\frac{{x}+{y}}{\mathrm{2}}={n}\pi\:\:\mid\:\mathrm{cos}\frac{{x}+{y}}{\mathrm{2}}=\mathrm{cos}\frac{{x}−{y}}{\mathrm{2}} \\ $$$${x}+{y}=\mathrm{2}{n}\pi\:\mid\frac{{x}+{y}}{\mathrm{2}}=\frac{{x}−{y}}{\mathrm{2}}\:,\frac{{y}−{x}}{\mathrm{2}} \\ $$$$\frac{{x}+{y}}{\mathrm{2}}=\frac{{x}−{y}}{\mathrm{2}}\:\mid\frac{{x}+{y}}{\mathrm{2}}=\:\frac{{y}−{x}}{\mathrm{2}} \\ $$$${y}=\mathrm{0}\:\mathrm{for}\:\mathrm{any}\:\mathrm{x}\:\:\mid\:\:{x}=\mathrm{0}\:\mathrm{for}\:\mathrm{any}\:\mathrm{y} \\ $$$${y}=\mathrm{2}{n}\pi\:\mathrm{for}\:\mathrm{any}\:\mathrm{x}\:\:\mid\:\:{x}=\mathrm{2}{m}\pi\:\mathrm{for}\:\mathrm{any}\:\mathrm{y} \\ $$$$ \\ $$