Menu Close

sin-xcos-xdx-sin-4-x-cos-4-x-




Question Number 20466 by tammi last updated on 27/Aug/17
∫((sin xcos xdx)/(sin^4 x+cos^4 x))
$$\int\frac{\mathrm{sin}\:{x}\mathrm{cos}\:{xdx}}{\mathrm{sin}^{\mathrm{4}} {x}+\mathrm{cos}\:^{\mathrm{4}} {x}} \\ $$
Answered by sma3l2996 last updated on 27/Aug/17
t=sin^2 x⇒dt=2sinxcosxdx  I=(1/2)∫(dt/(t^2 +(1−t)^2 ))=(1/2)∫(dt/(2t^2 −2t+1))  =(1/2)∫(dt/(2t^2 −2×(((√2)t)/( (√2)))+(1/2)−(1/2)+1))  =(1/2)∫(dt/(((√2)t−(1/( (√2))))^2 +(1/2)))  =(1/2)∫(dt/((((2t−1)/( (√2))))^2 +(1/2)))=(1/2)∫(dt/((1/2)((((2t−1)/( (√2)))×(√2))^2 +1)))  =∫(dt/((2t−1)^2 +1))  u=2t−1⇒du=2dt  I=(1/2)∫(du/(u^2 +1))=(1/2)tan^(−1) (u)+C=(1/2)tan^(−1) (2t−1)+C  =(1/2)tan^(−1) (2sin^2 x−1)+C=(1/2)tan^(−1) (−cos(2x))+C  I=−(1/2)tan^(−1) (cos(2x))+C
$${t}={sin}^{\mathrm{2}} {x}\Rightarrow{dt}=\mathrm{2}{sinxcosxdx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}×\frac{\sqrt{\mathrm{2}}{t}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\sqrt{\mathrm{2}}{t}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\frac{\mathrm{1}}{\mathrm{2}}\left(\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$=\int\frac{{dt}}{\left(\mathrm{2}{t}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$${u}=\mathrm{2}{t}−\mathrm{1}\Rightarrow{du}=\mathrm{2}{dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left({u}\right)+{C}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{t}−\mathrm{1}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{sin}^{\mathrm{2}} {x}−\mathrm{1}\right)+{C}=\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(−{cos}\left(\mathrm{2}{x}\right)\right)+{C} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left({cos}\left(\mathrm{2}{x}\right)\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *