Menu Close

since-f-z-z-1-find-f-1-z-




Question Number 129759 by mohammad17 last updated on 18/Jan/21
since f(z)=(√(z−1)) find f^(−1) (z) ?
$${since}\:{f}\left({z}\right)=\sqrt{{z}−\mathrm{1}}\:{find}\:{f}^{−\mathrm{1}} \left({z}\right)\:? \\ $$
Answered by I want to learn more last updated on 18/Jan/21
y  =  (√(z  −  1))     y^2    =   z  −  1        y^2   +  1  =  z             z   =   y^2   +  1             f^(− 1) (z)   =   z^2   +  1
$$\mathrm{y}\:\:=\:\:\sqrt{\mathrm{z}\:\:−\:\:\mathrm{1}} \\ $$$$\:\:\:\mathrm{y}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{z}\:\:−\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{1}\:\:=\:\:\mathrm{z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{z}\:\:\:=\:\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}^{−\:\mathrm{1}} \left(\mathrm{z}\right)\:\:\:=\:\:\:\mathrm{z}^{\mathrm{2}} \:\:+\:\:\mathrm{1} \\ $$
Commented by Olaf last updated on 18/Jan/21
only for z ≥ 0 sir.  D_f  = [1;+∞[ and D_f^(−1)   = [0;+∞[
$$\mathrm{only}\:\mathrm{for}\:{z}\:\geqslant\:\mathrm{0}\:\mathrm{sir}. \\ $$$$\mathscr{D}_{{f}} \:=\:\left[\mathrm{1};+\infty\left[\:\mathrm{and}\:\mathscr{D}_{{f}^{−\mathrm{1}} } \:=\:\left[\mathrm{0};+\infty\left[\right.\right.\right.\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *