Question Number 87409 by redmiiuser last updated on 04/Apr/20
$$\int\left({sinx}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} {dx} \\ $$
Commented by Prithwish Sen 1 last updated on 04/Apr/20
$$\int\frac{\mathrm{sin}^{\frac{\mathrm{1}}{\mathrm{5}}} \mathrm{x}\:\mathrm{cosx}}{\mathrm{cosx}}\:\mathrm{dx}\:\:\:\mathrm{put}\:\mathrm{sinx}\:=\:\mathrm{u}^{\mathrm{5}} \:\:\mathrm{cosxdx}\:=\:\mathrm{5u}^{\mathrm{4}} \mathrm{du} \\ $$$$=\int\frac{\mathrm{5u}^{\mathrm{5}} \mathrm{du}}{\:\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{10}} \:}}\:\:=\mathrm{5}\int\mathrm{u}^{\mathrm{5}} \left(\mathrm{1}−\mathrm{u}^{\mathrm{10}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dx}\:\:\:\mid\mathrm{x}\mid\leqslant\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{apply}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}… \\ $$
Commented by redmiiuser last updated on 04/Apr/20
$${Yes}\:{mister}\:{you}\:{are} \\ $$$${correct}.{God}\:{bless}\:{you}! \\ $$
Answered by mind is power last updated on 04/Apr/20
$$=\int\frac{{t}^{\frac{\mathrm{1}}{\mathrm{5}}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dx},{t}={sin}\left({x}\right) \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} .\left({n}!\right)^{\mathrm{2}} }{t}^{\mathrm{2}{n}} \\ $$$$=\int\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{t}^{\mathrm{2}{n}+\frac{\mathrm{1}}{\mathrm{5}}} {dt}=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{n}\right)!\mathrm{5}{t}^{\mathrm{2}{n}+\frac{\mathrm{6}}{\mathrm{5}}} }{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} \left(\mathrm{10}{n}+\mathrm{6}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{t}^{\frac{\mathrm{6}}{\mathrm{5}}} \underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} \left({n}+\frac{\mathrm{3}}{\mathrm{5}}\right)}=\frac{{t}^{\frac{\mathrm{6}}{\mathrm{5}}} }{\mathrm{2}}\left(\frac{\mathrm{5}}{\mathrm{3}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(\mathrm{2}{n}\right)!{x}^{\mathrm{2}{n}} }{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} \left({n}+\frac{\mathrm{3}}{\mathrm{5}}\right)}\right) \\ $$$$=\frac{\mathrm{5}{t}^{\frac{\mathrm{6}}{\mathrm{5}}} }{\mathrm{6}}\left(\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}^{{n}} {n}!.\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right).\frac{\mathrm{3}}{\mathrm{5}}}{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} .\left({n}+\frac{\mathrm{3}}{\mathrm{5}}\right)}.{t}^{\mathrm{2}{n}} \right) \\ $$$$=\frac{\mathrm{5}{t}^{\frac{\mathrm{6}}{\mathrm{5}}} }{\mathrm{6}}\left(\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{k}\right).\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\frac{\mathrm{3}}{\mathrm{5}}+{k}\right)}{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\frac{\mathrm{8}}{\mathrm{5}}+{k}\right)}.\frac{\left(\mathrm{t}^{\mathrm{2}} \right)^{{n}} }{{n}!}\right) \\ $$$$=\frac{\mathrm{5}}{\mathrm{6}}{t}^{\frac{\mathrm{6}}{\mathrm{5}}} \:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{5}};\frac{\mathrm{8}}{\mathrm{5}};\mathrm{t}^{\mathrm{2}} \right)+\mathrm{c} \\ $$$$=\frac{\mathrm{5}}{\mathrm{6}}\mathrm{sin}\left(\mathrm{x}\right)^{\frac{\mathrm{6}}{\mathrm{5}}} \:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{5}};\frac{\mathrm{8}}{\mathrm{5}};{sin}^{\mathrm{2}} \left({x}\right)\right)+{c} \\ $$$$ \\ $$$$ \\ $$