Menu Close

sinx-1-sinx-




Question Number 42579 by Raj Singh last updated on 28/Aug/18
∫ sinx/(√(1+sinx))
sinx/1+sinx
Commented by maxmathsup by imad last updated on 28/Aug/18
let A = ∫   ((sinx)/( (√(1+sinx)))) dx  we have  1+sinx =1+2sin((x/2))cos((x/2))  =(sin((x/2)) +cos((x/2)))^2  ⇒(√(1+sinx)) =sin((x/2))+cos((x/2))   A = ∫ ((1+sinx −1)/( (√(1+sinx))))dx = ∫ (√(1+sinx))dx −∫   (dx/( (√(1+sinx))))  =∫  (sin((x/2)) +cos((x/2)))dx −∫    (dx/(sin((x/2))+cos((x/2))))  =−2cos((x/2)) +2sin((x/2)) − ∫     (dx/( (√2)cos((x/2)−(π/4)))) changement (x/2)−(π/4) =t give  ∫    (dx/( (√2)cos((x/2)−(π/4)))) = ∫     ((2dt)/( (√2)cos(t))) =(√2) ∫    (dt/(cos(t)))  =_(tan((t/2)) =u)     (√2) ∫      (1/((1−u^2 )/(1+u^2 )))  ((2du)/(1+u^2 )) = 2(√2)  ∫   (du/(1−u^2 ))  =(√2)∫  ((1/(1+u)) +(1/(1−u)))du  =(√2)ln∣((1+u)/(1−u))∣ =(√2)ln∣((1+tan((t/2)))/(1−tan((t/2))))∣  =(√2)ln∣tan((t/2) +(π/4))∣ =(√2)ln∣tan((x/4) −(π/8) +(π/4))∣=(√2)ln∣tan((x/4)+(π/8))∣ ⇒  A = 2sin((x/2))−2cos((x/2))−(√2)ln∣tan((x/4)+(π/8))∣ +c .
letA=sinx1+sinxdxwehave1+sinx=1+2sin(x2)cos(x2)=(sin(x2)+cos(x2))21+sinx=sin(x2)+cos(x2)A=1+sinx11+sinxdx=1+sinxdxdx1+sinx=(sin(x2)+cos(x2))dxdxsin(x2)+cos(x2)=2cos(x2)+2sin(x2)dx2cos(x2π4)changementx2π4=tgivedx2cos(x2π4)=2dt2cos(t)=2dtcos(t)=tan(t2)=u211u21+u22du1+u2=22du1u2=2(11+u+11u)du=2ln1+u1u=2ln1+tan(t2)1tan(t2)=2lntan(t2+π4)=2lntan(x4π8+π4)∣=2lntan(x4+π8)A=2sin(x2)2cos(x2)2lntan(x4+π8)+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Aug/18
∫((sinx)/( (√(1+sinx))))dx  ∫((1+sinx−1)/( (√(1+sinx))))dx  ∫(√(1+sinx)) dx−∫(dx/( (√(1+sinx))))dx  ∫(sin(x/2)+cos(x/2))−∫(dx/(sin(x/2)+cos(x/2)))  ∫sin(x/2)+cos(x/2)dx−(1/( (√2)))∫(dx/(((1/( (√2)))sin(x/2)+(1/( (√2)))cos(x/2))))  ∫(sin(x/2)+cos(x/2))dx−(1/( (√2)))∫cosec((Π/4)+(x/2))dx  =−((cos(x/2))/(1/2))+((sin(x/2))/(1/2))−(1/( (√2)))lntan((((Π/4)+(x/2))/2))+c  =2(−cos(x/2)+sin(x/2))−(1/( (√2)))lntan((Π/8)+(x/4))+c
sinx1+sinxdx1+sinx11+sinxdx1+sinxdxdx1+sinxdx(sinx2+cosx2)dxsinx2+cosx2sinx2+cosx2dx12dx(12sinx2+12cosx2)(sinx2+cosx2)dx12cosec(Π4+x2)dx=cosx212+sinx21212lntan(Π4+x22)+c=2(cosx2+sinx2)12lntan(Π8+x4)+c
Commented by maxmathsup by imad last updated on 28/Aug/18
your answer is correct sir Tanmay.
youransweriscorrectsirTanmay.
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Aug/18
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *