Menu Close

sinx-2-1-2-sin2x-2-cosx-2-0-x-0-2pi-




Question Number 186685 by norboyev last updated on 08/Feb/23
(sinx)^2 −(1/2)sin2x−2(cosx)^2 ≥0  x∈[0;2π]
(sinx)212sin2x2(cosx)20x[0;2π]
Answered by Ar Brandon last updated on 08/Feb/23
sin^2 x−(1/2)sin2x−2cos^2 x≥0  ⇒sin^2 x−sinxcosx−2cos^2 x≥0  ⇒s^2 −s(√(1−s^2 ))−2(1−s^2 )≥0   ( ∣s∣ ≤1 )  ⇒3s^2 −2≥s(√(1−s^2 ))    ⇒   9s^4 −12s^2 +4≥s^2 (1−s^2 )  ⇒10s^4 −13s^2 +4≥0    ⇒    (2s^2 −1)(5s^2 −4)≥0  ⇒((√2)s−1)((√2)s+1)((√5)s−2)((√5)s+2)≥0  ⇒s∈(−1; −(2/( (√5)))]∪[−(1/( (√2))); (1/( (√2)))]∪[(2/( (√5))); 1)  ⇒x∈[−(π/2); −arcsin((2/( (√5))))]∪[−arcsin((2/( (√5))));arcsin((2/( (√5))))]        ∪[arcsin((2/( (√5)))); (π/2)]
sin2x12sin2x2cos2x0sin2xsinxcosx2cos2x0s2s1s22(1s2)0(s1)3s22s1s29s412s2+4s2(1s2)10s413s2+40(2s21)(5s24)0(2s1)(2s+1)(5s2)(5s+2)0s(1;25][12;12][25;1)x[π2;arcsin(25)][arcsin(25);arcsin(25)][arcsin(25);π2]

Leave a Reply

Your email address will not be published. Required fields are marked *