Menu Close

sinx-cosx-sinx-cosx-dx-




Question Number 93958 by mashallah last updated on 16/May/20
∫((sinx−cosx)/(sinx+cosx))dx=
sinxcosxsinx+cosxdx=
Commented by mathmax by abdo last updated on 17/May/20
I =∫ ((sinx−cosx)/(sinx +cosx))dx ⇒I =∫((tanx−1)/(tanx +1))dx =_(tanx =t)   =∫((t−1)/(t+1))×(dt/(1+t^2 )) =∫    ((t−1)/((t+1)(t^2 +1)))dt let decompose  F(t) =((t−1)/((t+1)(t^2  +1))) ⇒F(t) =(a/(t+1)) +((bt+c)/(t^2  +1))  a =−1   lim_(t→+∞) tF(t) =0 =a+b ⇒b =1   F(o) =−1 =a +c ⇒c =0 ⇒F(t) =−(1/(t+1)) +(t/(t^2  +1)) ⇒  I =−ln∣t+1∣+(1/2)ln(1+t^2 ) +C  =(1/2)ln(1+tan^2 x)−ln∣1+tanx∣ +C
I=sinxcosxsinx+cosxdxI=tanx1tanx+1dx=tanx=t=t1t+1×dt1+t2=t1(t+1)(t2+1)dtletdecomposeF(t)=t1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=1limt+tF(t)=0=a+bb=1F(o)=1=a+cc=0F(t)=1t+1+tt2+1I=lnt+1+12ln(1+t2)+C=12ln(1+tan2x)ln1+tanx+C
Answered by john santu last updated on 16/May/20
(((sin x−cos x)^2 )/(−cos 2x)) = ((1−sin 2x)/(−cos 2x))  = tan 2x−sec 2x
(sinxcosx)2cos2x=1sin2xcos2x=tan2xsec2x
Answered by Kunal12588 last updated on 16/May/20
sin x+cos x=t  ⇒−(sin x−cos x)dx=dt  I=∫−(dt/t)=−ln∣sin x + cos x∣
sinx+cosx=t(sinxcosx)dx=dtI=dtt=lnsinx+cosx

Leave a Reply

Your email address will not be published. Required fields are marked *