Menu Close

sinx-sin4x-dx-




Question Number 49187 by Rahul kharade last updated on 04/Dec/18
∫((sinx)/(sin4x))dx
sinxsin4xdx
Answered by MJS last updated on 04/Dec/18
∫((sin x)/(sin 4x))dx=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =−(1/2)∫(((t^2 +1)^2 )/((t−1)(t+1)(t−1−(√2))(t−1+(√2))(t+1−(√2))(t+1+(√2))))dt=  =−(1/2)∫(−(1/(2(t−1)))+(1/(2(t+1)))+((√2)/(4(t−1−(√2))))−((√2)/(4(t−1+(√2))))+((√2)/(4(t+1−(√2))))−((√2)/(4(t+1+(√2)))))=       [now solve with formula ∫(dt/(t+a))=ln ∣t+a∣]  =((√2)/8)ln ∣((t^2 +2(√2)t+1)/(t^2 −2(√2)t+1))∣ +(1/4)ln ∣((t−1)/(t+1))∣ =  =((√2)/8)ln ∣((1+(√2)sin x)/(1−(√2)sin x))∣ +(1/4)ln ∣(1/(tan ((x/2)+(π/4))))∣ +C
sinxsin4xdx=[t=tanx2dx=2dtt2+1]=12(t2+1)2(t1)(t+1)(t12)(t1+2)(t+12)(t+1+2)dt==12(12(t1)+12(t+1)+24(t12)24(t1+2)+24(t+12)24(t+1+2))=[nowsolvewithformuladtt+a=lnt+a]=28lnt2+22t+1t222t+1+14lnt1t+1==28ln1+2sinx12sinx+14ln1tan(x2+π4)+C
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18
∫((sinx)/(2sin2xcos2x))dx  ∫((sinx)/(2(2sinxcosx)(cos2x)))dx  ∫(dx/(4cosxcos2x))dx  ∫((cosxdx)/(4(1−sin^2 x)(1−2sin^2 x)))  ∫(dt/(4(1−t^2 )(1−2t^2 )))   t=sinx  (1/4)∫(((2−2t^2 )−(1−2t^2 ))/((1−t^2 )(1−2t^2 )))dt  (1/4)∫((2dt)/(1−2t^2 ))−(1/4)∫(dt/(1−t^2 ))  (1/2)∫(dt/(2((1/2)−t^2 )))−(1/4)∫(dt/(1−t^2 ))  (1/4)∫(dt/(((1/( (√2) )))^2 −t^2 ))−(1/4)∫(dt/(1−t^2 ))  now use for mula ∫(dx/(a^2 −x^2 ))=(1/(2a))ln(((a+x)/(a−x)))+c  so (1/4)×(1/(2×(1/( (√2)))))ln((((1/( (√2)))+t)/((1/( (√2)))−t)))+(1/4)×(1/2)ln(((1+t)/(1−t)))+c  (1/(4(√2) ))ln(((1+(√2) sinx)/(1−(√2) sinx)))+(1/8)ln(((1+sinx)/(1−sinx)))+c  pls check...
sinx2sin2xcos2xdxsinx2(2sinxcosx)(cos2x)dxdx4cosxcos2xdxcosxdx4(1sin2x)(12sin2x)dt4(1t2)(12t2)t=sinx14(22t2)(12t2)(1t2)(12t2)dt142dt12t214dt1t212dt2(12t2)14dt1t214dt(12)2t214dt1t2nowuseformuladxa2x2=12aln(a+xax)+cso14×12×12ln(12+t12t)+14×12ln(1+t1t)+c142ln(1+2sinx12sinx)+18ln(1+sinx1sinx)+cplscheck

Leave a Reply

Your email address will not be published. Required fields are marked *