Menu Close

sinx-x-b-n-0-1-n-2n-1-x-2n-1-x-b-prove-that-




Question Number 186941 by mathlove last updated on 12/Feb/23
((sinx)/x^b )=((Σ_(n=0) ^∞ (((−1)^n )/((2n+1)!))x^(2n+1) )/x^b )  prove that
sinxxb=n=0(1)n(2n+1)!x2n+1xbprovethat
Commented by mr W last updated on 12/Feb/23
x^b =x^b  needs no proof.  sin x=Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/((2n+1)!))   just apply taylor series for function  f(x)=sin x at point x=0.  ⇒see taylor series!
xb=xbneedsnoproof.sinx=n=0(1)nx2n+1(2n+1)!justapplytaylorseriesforfunctionf(x)=sinxatpointx=0.seetaylorseries!

Leave a Reply

Your email address will not be published. Required fields are marked *