Menu Close

sinx-x-dx-Mastermind-




Question Number 174770 by Mastermind last updated on 10/Aug/22
∫(((sinx)/( (√x))))dx    Mastermind
$$\int\left(\frac{\mathrm{sinx}}{\:\sqrt{\mathrm{x}}}\right)\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Answered by Frix last updated on 10/Aug/22
∫((sin x)/( (√x)))dx=^((∗)) (√(2π))∫sin ((πu^2 )/2) du which is the  Fresnel−Integral =(√(2π))S (u). the answer is  ∫((sin x)/( (√x)))dx=(√(2π))S (√((2x)/π)) +C    (∗) let u=(√((2x)/π)) ⇒ dx=(√(2πx))
$$\int\frac{\mathrm{sin}\:{x}}{\:\sqrt{{x}}}{dx}\overset{\left(\ast\right)} {=}\sqrt{\mathrm{2}\pi}\int\mathrm{sin}\:\frac{\pi{u}^{\mathrm{2}} }{\mathrm{2}}\:{du}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{Fresnel}−\mathrm{Integral}\:=\sqrt{\mathrm{2}\pi}\mathrm{S}\:\left({u}\right).\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is} \\ $$$$\int\frac{\mathrm{sin}\:{x}}{\:\sqrt{{x}}}{dx}=\sqrt{\mathrm{2}\pi}\mathrm{S}\:\sqrt{\frac{\mathrm{2}{x}}{\pi}}\:+{C} \\ $$$$ \\ $$$$\left(\ast\right)\:\mathrm{let}\:{u}=\sqrt{\frac{\mathrm{2}{x}}{\pi}}\:\Rightarrow\:{dx}=\sqrt{\mathrm{2}\pi{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *