Menu Close

Sir-Aifour-I-just-answered-your-question-number-37209-greetings-from-a-rainy-Saturday-evening-in-Vienna-Austria-




Question Number 37691 by MJS last updated on 16/Jun/18
Sir Aifour, I just answered your question  number 37209... greetings from a rainy  Saturday evening in Vienna, Austria!
$$\mathrm{Sir}\:\mathrm{Aifour},\:\mathrm{I}\:\mathrm{just}\:\mathrm{answered}\:\mathrm{your}\:\mathrm{question} \\ $$$$\mathrm{number}\:\mathrm{37209}…\:\mathrm{greetings}\:\mathrm{from}\:\mathrm{a}\:\mathrm{rainy} \\ $$$$\mathrm{Saturday}\:\mathrm{evening}\:\mathrm{in}\:\mathrm{Vienna},\:\mathrm{Austria}! \\ $$
Commented by ajfour last updated on 16/Jun/18
rainy even up here, Sir  i′ll try and follow your solution.
$${rainy}\:{even}\:{up}\:{here},\:{Sir} \\ $$$${i}'{ll}\:{try}\:{and}\:{follow}\:{your}\:{solution}. \\ $$
Commented by MJS last updated on 16/Jun/18
the idea is simple, but the equations get  harder to simplify from step to step  the method is easy to explain:  just think about the required distances  between the centers  2 circles touching from outside:  distance^2 =(sum of radii)^2   2 circles touching, one inside the other:  distance^2 =(difference of radii)^2
$$\mathrm{the}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{simple},\:\mathrm{but}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{get} \\ $$$$\mathrm{harder}\:\mathrm{to}\:\mathrm{simplify}\:\mathrm{from}\:\mathrm{step}\:\mathrm{to}\:\mathrm{step} \\ $$$$\mathrm{the}\:\mathrm{method}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{explain}: \\ $$$$\mathrm{just}\:\mathrm{think}\:\mathrm{about}\:\mathrm{the}\:\mathrm{required}\:\mathrm{distances} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{centers} \\ $$$$\mathrm{2}\:\mathrm{circles}\:\mathrm{touching}\:\mathrm{from}\:\mathrm{outside}: \\ $$$$\mathrm{distance}^{\mathrm{2}} =\left(\mathrm{sum}\:\mathrm{of}\:\mathrm{radii}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{circles}\:\mathrm{touching},\:\mathrm{one}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{other}: \\ $$$$\mathrm{distance}^{\mathrm{2}} =\left(\mathrm{difference}\:\mathrm{of}\:\mathrm{radii}\right)^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *