Menu Close

slolve-the-definite-integral-1-2-1-x-dxusingg-gt-ng-trapezoidal-rule-with-4-sub-intervals-hencefind-an-approximate-value-of-ln-2-




Question Number 25472 by rita1608 last updated on 10/Dec/17
slolve the definite integral∫_1^  ^2 (1/x)dxusingg>   ng   trapezoidal rule with 4 sub intervals   hencefind an approximate value of   ln 2.
slolvethedefiniteintegral121xdxusingg>ngtrapezoidalrulewith4subintervalshencefindanapproximatevalueofln2.
Answered by prakash jain last updated on 10/Dec/17
Four subintervals  Δx=((2−1)/4)=(1/4)  x_0 =1,x_1 =1.25,x_2 =1.5, x_3 =1.75,x_4 =2  Δx=0.25  I=((Δx)/2)[f(x_0 )+2f(x_1 )+2f(x_2 )+2f(x_3 )+f(x_4 )]  =((0.25)/2)[1+(2/(1.25))+(2/(1.5))+(2/(1.75))+(1/2)]  =(1/(2×4))[1+((2×4)/5)+((2×2)/3)+((2×4)/7)+(1/2)]  =(1/8)[1+1.6+1.33+1.14+.5]  =((5.57)/8)=0.69  ∫_1 ^2 (1/x)dx=[ln x]_1 ^2 =ln 2  ln 2≈0.69
FoursubintervalsΔx=214=14x0=1,x1=1.25,x2=1.5,x3=1.75,x4=2Δx=0.25I=Δx2[f(x0)+2f(x1)+2f(x2)+2f(x3)+f(x4)]=0.252[1+21.25+21.5+21.75+12]=12×4[1+2×45+2×23+2×47+12]=18[1+1.6+1.33+1.14+.5]=5.578=0.69121xdx=[lnx]12=ln2ln20.69

Leave a Reply

Your email address will not be published. Required fields are marked *