Soient-a-0-1-et-b-R-Soit-f-une-application-de-R-dans-lui-me-me-de-classe-C-1-telle-que-pour-tout-re-el-x-f-f-x-ax-b-1-Montrer-que-pour-tout-re-el-x-f-ax-b-af-x-b-En-de-duire- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 147254 by Ar Brandon last updated on 19/Jul/21 Soienta∈]0,1[etb∈R.SoitfuneapplicationdeRdanslui−meme^,declasseC1,tellequepourtoutreel´x,f(f(x))=ax+b.1.Montrerquepourtoutreel´x,f(ax+b)=af(x)+b.Endeduire´quepourtoutreel´x,f′(ax+b)=f′(x).2.Soit(un)n∈Nunesuitereelle´tellequepourtoutn∈N,un+1=aun+b.Montrerqueunestconvergentedelimitel=b1−a3.Montrerquef′estconstante.Endeduire´l′expressiondef.4.Quefairesia∈]1,+∞[? Answered by ArielVyny last updated on 19/Jul/21 1)onaf(f(x))=ax+bx∈Rsoitx∈Rtelquef(x)==→f(0)=bonposey∈Rtelquef(y)=ax+bdoncilexistef−1telquey=f−1(ax+b)onassimilealorsl′applicationaunendomorphismeisomorpheparconsequentfestlineaire∀x∈R(a,b)∈((]0;1[),R)f(ax+b)=f(ax)+f(b)orf(0)=b→f(f(0))=f(b)=bonvoitaveclalinearitedefquef(ax)=af(x)conclusionf(ax+b)=af(x)+bendeduisonsquef′(ax+b)=f′(x)sachantquefestdeclasseC1etdelaqueationprecedenteona:f′(ax+b)=af′(ax+b)=af′(x)conclusionf′(ax+b)=f′(x)2)onaUn+1=aUn+b∀n∈NMtqUnconvergeversl=b1−aposonsf(ax+b)=Un+1etf(x)=UnsiUnconverveverslalorsUn+1convergeaussidonconf(ax+b)∼∞f(x)orl′applicationestunendomorphismeisomorphealorsax+b∼x→ax+bx→1→a+bx→1(x→+∞)cequiestlogiquecaraestmajorepar1parconsequentonabienUnconvergeanteetlim(Un+1)=lim(aUn+b)enremplacantonal=al+b→l−al=b→l=b1−ad′oul=b1−aetUnconverge3)montronsquef′estconstanteonsaitquef(f(x))=ax+benderivantchaquemembredel′egaliteonaf′(x)f′(f(x))=bcetteegaliten′addsensquesif′(x)f′(f(x))=ctecarb=ctedonciln′estclairquef′(x)dependedexdonclefaitquef′(x)soitconstantestineluctabledanscecasconclusionf′(x)=cte Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-147233Next Next post: 1-find-dx-x-2-5-x-3-9-2-calculate-4-dx-x-2-5-x-3-9- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.