Menu Close

soit-0-pi-determiner-1-le-module-et-l-argument-de-a-1-e-i-b-1-e-i-2-deduire-le-module-et-l-argument-de-a-1-e-i-1-e-i-b-1-e-i-1-e-i-rochinel930-gmail-c-




Question Number 81954 by Cmr 237 last updated on 16/Feb/20
 soit α∈]0;π[. determiner:  1)le module et l′argument de:  a)1−e^(iα) ,b)1+e^(i𝛂)   2)deduire le module et l′argument de   a) ((1−e^(iα) )/(1+e^(iα) )), b)(1−e^(iα) )(1+e^(iα) )   rochinel930@gmail.c
soitα]0;π[.determiner:1)lemoduleetlargumentde:a)1eiα,b)1+eiα2)deduirelemoduleetlargumentdea)1eiα1+eiα,b)(1eiα)(1+eiα)rochinel930@gmail.c
Commented by abdomathmax last updated on 16/Feb/20
z=1−e^(iα)  =1−cosα−isinα =2sin^2 ((α/2))−2isin((α/2))cos((α/2))  =2sin((α/2))(sin((α/2))−icos((α/2)))  0<(α/2)<(π/2) ⇒sin((α/2))>0 ⇒z=2sin((α/2)){cos((π/2)−(α/2))−isin((π/2)−(α/2))}  =2sin((α/2)){cos(((α−π)/2))+isin(((α−π)/2))} ⇒  ∣z∣=2sin((α/2)) and arg(z)=((α−π)/2) [2π]
z=1eiα=1cosαisinα=2sin2(α2)2isin(α2)cos(α2)=2sin(α2)(sin(α2)icos(α2))0<α2<π2sin(α2)>0z=2sin(α2){cos(π2α2)isin(π2α2)}=2sin(α2){cos(απ2)+isin(απ2)}z∣=2sin(α2)andarg(z)=απ2[2π]
Commented by abdomathmax last updated on 16/Feb/20
Z=1+e^(iα)  ⇒Z=1+cosα +isinα  =2cos^2 ((α/2))+2isin((α/2))cos((α/2))  =2cos((α/2)){cos((α/2))+isin((α/2))}  cos((α/2))>0 due to 0<α<π ⇒∣Z∣=2cos((α/2))and  argZ=(α/2)[2π]
Z=1+eiαZ=1+cosα+isinα=2cos2(α2)+2isin(α2)cos(α2)=2cos(α2){cos(α2)+isin(α2)}cos(α2)>0dueto0<α<π⇒∣Z∣=2cos(α2)andargZ=α2[2π]
Commented by abdomathmax last updated on 16/Feb/20
∣((1−e^(iα) )/(1+e^(iα) ))∣ =((∣1−e^(iα) ∣)/(∣1+e^(iα) ∣)) =((2sin((α/2)))/(2cos((α/2))))=tan((α/2)) and  arg(((1−e^(iα) )/(1+e^(iα) )))=arg(1−e^(iα) )−arg(1+e^(iα) ) [2π]  =((α−π)/2)−(α/2)[2π] =−(π/2)[2π]
1eiα1+eiα=1eiα1+eiα=2sin(α2)2cos(α2)=tan(α2)andarg(1eiα1+eiα)=arg(1eiα)arg(1+eiα)[2π]=απ2α2[2π]=π2[2π]
Commented by abdomathmax last updated on 16/Feb/20
∣(1−e^(iα) )(1+e^(iα) )∣=2sin((α/2))×2cos((α/2))  =2sin(α) and arg{(1−e^(iα) )(1+e^(iα) )}  =arg(1−e^(iα) ) +arg(1+e^(iα) )[2π]  =((α−π)/2) +(α/2) [2π] =α−(π/2)
(1eiα)(1+eiα)∣=2sin(α2)×2cos(α2)=2sin(α)andarg{(1eiα)(1+eiα)}=arg(1eiα)+arg(1+eiα)[2π]=απ2+α2[2π]=απ2
Commented by Cmr 237 last updated on 16/Feb/20
1) 1+e^(iα) =e^((iα)/2) (e^(−((iα)/2)) +e^((iα)/2) )            =2cos((α/2))e^((iα)/2)    ∣1+e^(iα) ∣=∣2cos((α/2))e^((iα)/2) ∣                =2cos((α/2))  ∣1−e^(iα) ∣=∣−2isin((α/2))e^((iα)/2) ∣      =2sin((α/2))  arg(1−e^(iα) )=arg(−2isin((α/2))e^((iα)/2) )  =arg(−2sin((α/2)))+arg(i)+arg(e^((iα)/2) )  =π+(π/2)+(α/2)+2kπ  =((3π+α)/2)+2kπ
1)1+eiα=eiα2(eiα2+eiα2)=2cos(α2)eiα21+eiα∣=∣2cos(α2)eiα2=2cos(α2)1eiα∣=∣2isin(α2)eiα2=2sin(α2)arg(1eiα)=arg(2isin(α2)eiα2)=arg(2sin(α2))+arg(i)+arg(eiα2)=π+π2+α2+2kπ=3π+α2+2kπ
Commented by mathmax by abdo last updated on 16/Feb/20
((3π+α)/2) +2kπ =2π−(π/2)+(α/2) +2kπ =((α−π)/2)[2π]
3π+α2+2kπ=2ππ2+α2+2kπ=απ2[2π]

Leave a Reply

Your email address will not be published. Required fields are marked *