Menu Close

soit-o-x-f-t-x-0-x-t-2-f-t-dt-determiner-f-1-




Question Number 156475 by SANOGO last updated on 11/Oct/21
soit:∫_o ^x f(t)=x+∫_0 ^x t^2 f(t)dt  determiner f(1)
soit:oxf(t)=x+0xt2f(t)dtdeterminerf(1)
Commented by SANOGO last updated on 11/Oct/21
ok thank you
okthankyou
Commented by mr W last updated on 11/Oct/21
f(x)=1+x^2 f(x)  f(x)=(1/(1−x^2 ))  f(1) doesn′t exist.
f(x)=1+x2f(x)f(x)=11x2f(1)doesntexist.
Commented by SANOGO last updated on 11/Oct/21
can you detail for me   so i understand?
canyoudetailformesoiunderstand?
Commented by mr W last updated on 11/Oct/21
(d/dx)[∫_(a(x)) ^(b(x)) f(t)dt]=f[b(x)]((db(x))/dx)−f[a(x)]((da(x))/dx)
ddx[a(x)b(x)f(t)dt]=f[b(x)]db(x)dxf[a(x)]da(x)dx
Answered by Mathspace last updated on 11/Oct/21
by derivation we get  f(x)=1+x^2 f(x) ⇒(1−x^2 )f(x)=1 ⇒  f(x)=(1/(1−x^2 )) ⇒f(1) dont exist!
byderivationwegetf(x)=1+x2f(x)(1x2)f(x)=1f(x)=11x2f(1)dontexist!
Commented by SANOGO last updated on 11/Oct/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *