Question Number 145136 by ArielVyny last updated on 02/Jul/21
$${Soit}\:{X}\:{une}\:{variable}\:{aleatoire}\:{de}\:{loi} \\ $$$$\left.{geometrique}\:{de}\:{parametre}\:{p}\in\right]\mathrm{0}.\mathrm{1}\left[\right. \\ $$$${calculer}\:{P}\left(\left\{{X}\geqslant\mathrm{4}\right\}\right) \\ $$
Answered by Olaf_Thorendsen last updated on 03/Jul/21
$${P}\left({X}=\:{k}\right)\:=\:{q}^{{k}−\mathrm{1}} {p}\:=\:\left(\mathrm{1}−{p}\right)^{{k}−\mathrm{1}} {p} \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\mathrm{1}−{P}\left({X}=\mathrm{1}\right)−{P}\left({X}=\mathrm{2}\right)−{P}\left({X}=\mathrm{3}\right) \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\mathrm{1}−\left(\mathrm{1}−{p}\right)^{\mathrm{0}} {p}−\left(\mathrm{1}−{p}\right){p}−\left(\mathrm{1}−{p}\right)^{\mathrm{2}} {p} \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\mathrm{1}−{p}−\left(\mathrm{1}−{p}\right){p}−\left(\mathrm{1}−{p}\right)^{\mathrm{2}} {p} \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{p}−\left(\mathrm{1}−{p}\right){p}\right) \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−\mathrm{2}{p}+{p}^{\mathrm{2}} \right) \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{p}\right)^{\mathrm{2}} \\ $$$${P}\left({X}\geqslant\mathrm{4}\right)\:=\:\left(\mathrm{1}−{p}\right)^{\mathrm{3}} \\ $$