Menu Close

soit-y-tan-x-y-sin-2x-avec-f-0-1-alors-f-pi-




Question Number 154785 by SANOGO last updated on 21/Sep/21
soit: y′+tan(x)y=sin(2x) ,avec  f(0)=1   alors f(π)=?
$${soit}:\:{y}'+{tan}\left({x}\right){y}={sin}\left(\mathrm{2}{x}\right)\:,{avec} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\:{alors}\:{f}\left(\pi\right)=? \\ $$
Commented by SANOGO last updated on 21/Sep/21
merci bien le dur
$${merci}\:{bien}\:{le}\:{dur} \\ $$
Commented by tabata last updated on 21/Sep/21
you are welcome
$$\boldsymbol{{you}}\:\boldsymbol{{are}}\:\boldsymbol{{welcome}} \\ $$
Commented by tabata last updated on 21/Sep/21
p(x) = tan(x)    ,   Q(x) = sin(2x)    (I.f) = e^(∫ p(x)dx)  = e^(∫ tan(x))  = e^(−ln∣cos(x)∣)  = sec(x)    y = ((∫ (I.f) Q (x) dx)/((I.f))) = ((∫ 2 sin (x) dx )/(sec(x))) = − 2 cos^2 (x) + c cos(x)    ∴  y = − 2 cos^2 (x) + c cos(x)    f(0) = 1 ⇒ 1 = −2 + c ⇒ c = 3    ∴ y = − 2 cos^2 (x) + 3 cos(x)    f ( 𝛑 ) = − 2 ( cos(𝛑))^2  + 3 cos(𝛑)    f ( 𝛑 ) = − 2 − 3 = −5     ⟨ M . T  ⟩
$$\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)\:\:\:\:,\:\:\:\boldsymbol{{Q}}\left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\left(\boldsymbol{{I}}.\boldsymbol{{f}}\right)\:=\:\boldsymbol{{e}}^{\int\:\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}} \:=\:\boldsymbol{{e}}^{\int\:\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \:=\:\boldsymbol{{e}}^{−\boldsymbol{{ln}}\mid\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\mid} \:=\:\boldsymbol{{sec}}\left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\boldsymbol{{y}}\:=\:\frac{\int\:\left(\boldsymbol{{I}}.\boldsymbol{{f}}\right)\:\boldsymbol{{Q}}\:\left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}}{\left(\boldsymbol{{I}}.\boldsymbol{{f}}\right)}\:=\:\frac{\int\:\mathrm{2}\:\boldsymbol{{sin}}\:\left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}\:}{\boldsymbol{{sec}}\left(\boldsymbol{{x}}\right)}\:=\:−\:\mathrm{2}\:\boldsymbol{{cos}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:+\:\boldsymbol{{c}}\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\therefore\:\:\boldsymbol{{y}}\:=\:−\:\mathrm{2}\:\boldsymbol{{cos}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:+\:\boldsymbol{{c}}\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\boldsymbol{{f}}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:\Rightarrow\:\mathrm{1}\:=\:−\mathrm{2}\:+\:\boldsymbol{{c}}\:\Rightarrow\:\boldsymbol{{c}}\:=\:\mathrm{3} \\ $$$$ \\ $$$$\therefore\:\boldsymbol{{y}}\:=\:−\:\mathrm{2}\:\boldsymbol{{cos}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:+\:\mathrm{3}\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\boldsymbol{{f}}\:\left(\:\boldsymbol{\pi}\:\right)\:=\:−\:\mathrm{2}\:\left(\:\boldsymbol{{cos}}\left(\boldsymbol{\pi}\right)\right)^{\mathrm{2}} \:+\:\mathrm{3}\:\boldsymbol{{cos}}\left(\boldsymbol{\pi}\right) \\ $$$$ \\ $$$$\boldsymbol{{f}}\:\left(\:\boldsymbol{\pi}\:\right)\:=\:−\:\mathrm{2}\:−\:\mathrm{3}\:=\:−\mathrm{5}\: \\ $$$$ \\ $$$$\langle\:\boldsymbol{{M}}\:.\:\boldsymbol{{T}}\:\:\rangle \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *