Menu Close

solution-with-residu-theorem-0-x-2-x-4-2x-2-2-dx-




Question Number 163854 by amin96 last updated on 11/Jan/22
solution with residu theorem  ∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=?
solutionwithresidutheorem0x2x4+2x2+2dx=?
Answered by Ar Brandon last updated on 11/Jan/22
I=∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=(1/2)∫_0 ^∞ (((x^2 +(√2))+(x^2 −(√2)))/(x^4 +2x^2 +2))dx     =(1/2)∫_0 ^∞ ((x^2 +(√2))/(x^4 +2x^2 +2))dx+(1/2)∫_0 ^∞ ((x^2 −(√2))/(x^4 +2x^2 +2))dx     =(1/2)∫_0 ^∞ ((1+((√2)/x^2 ))/(x^2 +2+(2/x^2 )))dx+(1/2)∫_0 ^∞ ((1−((√2)/x^2 ))/(x^2 +2+(2/x^2 )))dx     =(1/2)∫_0 ^∞ ((1+((√2)/x^2 ))/((x−((√2)/x))^2 +2+2(√2)))dx+(1/2)∫_0 ^∞ ((1−((√2)/x^2 ))/((x+((√2)/x))^2 +2−2(√2)))dx     =(1/2)∫_(−∞) ^(+∞) (du/(u^2 +(2+2(√2))))+(1/2)∫_(+∞) ^(+∞) (dv/(v^2 +2−2(√2)))     =(1/2)∙(1/( (√(2+2(√2)))))[arctan((u/( (√(2+2(√2))))))]_(−∞) ^(+∞) =(π/(2(√(2+2(√2)))))
I=0x2x4+2x2+2dx=120(x2+2)+(x22)x4+2x2+2dx=120x2+2x4+2x2+2dx+120x22x4+2x2+2dx=1201+2x2x2+2+2x2dx+12012x2x2+2+2x2dx=1201+2x2(x2x)2+2+22dx+12012x2(x+2x)2+222dx=12+duu2+(2+22)+12++dvv2+222=1212+22[arctan(u2+22)]+=π22+22
Commented by peter frank last updated on 11/Jan/22
great
great
Commented by amin96 last updated on 11/Jan/22
great sir. correct answer
greatsir.correctanswer

Leave a Reply

Your email address will not be published. Required fields are marked *