Menu Close

solution-xdy-3y-e-x-dx-with-integration-factor-




Question Number 118349 by syamil last updated on 17/Oct/20
solution xdy + (3y − e^x )dx   with integration factor
$${solution}\:{xdy}\:+\:\left(\mathrm{3}{y}\:−\:{e}^{{x}} \right){dx}\: \\ $$$${with}\:{integration}\:{factor} \\ $$
Answered by Dwaipayan Shikari last updated on 17/Oct/20
xdy+(3y−e^x )dx=0  x(dy/dx)+3y−e^x =0  (dy/dx)+((3y)/x)=e^x   I.F=e^(∫(3/x)) =x^3   y.x^3 =∫x^3 e^x   y.x^3 =x^3 e^x −∫3x^2 e^x   y.x^3 =x^3 e^x −3x^2 e^x +6∫xe^x   y.x^3 =x^3 e^x −3x^2 e^x +6xe^x −6e^x +C  y=e^x (1−(3/x)+(6/x^2 )−(6/x^3 ))+Cx^(−3)
$${xdy}+\left(\mathrm{3}{y}−{e}^{{x}} \right){dx}=\mathrm{0} \\ $$$${x}\frac{{dy}}{{dx}}+\mathrm{3}{y}−{e}^{{x}} =\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}+\frac{\mathrm{3}{y}}{{x}}={e}^{{x}} \\ $$$${I}.{F}={e}^{\int\frac{\mathrm{3}}{{x}}} ={x}^{\mathrm{3}} \\ $$$${y}.{x}^{\mathrm{3}} =\int{x}^{\mathrm{3}} {e}^{{x}} \\ $$$${y}.{x}^{\mathrm{3}} ={x}^{\mathrm{3}} {e}^{{x}} −\int\mathrm{3}{x}^{\mathrm{2}} {e}^{{x}} \\ $$$${y}.{x}^{\mathrm{3}} ={x}^{\mathrm{3}} {e}^{{x}} −\mathrm{3}{x}^{\mathrm{2}} {e}^{{x}} +\mathrm{6}\int{xe}^{{x}} \\ $$$${y}.{x}^{\mathrm{3}} ={x}^{\mathrm{3}} {e}^{{x}} −\mathrm{3}{x}^{\mathrm{2}} {e}^{{x}} +\mathrm{6}{xe}^{{x}} −\mathrm{6}{e}^{{x}} +{C} \\ $$$${y}={e}^{{x}} \left(\mathrm{1}−\frac{\mathrm{3}}{{x}}+\frac{\mathrm{6}}{{x}^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}^{\mathrm{3}} }\right)+{Cx}^{−\mathrm{3}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *