Menu Close

solv-e-x-x-1-0-




Question Number 167696 by bounhome last updated on 23/Mar/22
solv:    e^x +x+1=0
$${solv}:\:\: \\ $$$${e}^{{x}} +{x}+\mathrm{1}=\mathrm{0} \\ $$
Answered by mr W last updated on 23/Mar/22
e^x =−(x+1)  e^(x+1) =−e(x+1)  −(x+1)e^(−(x+1)) =(1/e)  −(x+1)=W((1/e))  ⇒x=−1−W((1/e))≈−1.278465
$${e}^{{x}} =−\left({x}+\mathrm{1}\right) \\ $$$${e}^{{x}+\mathrm{1}} =−{e}\left({x}+\mathrm{1}\right) \\ $$$$−\left({x}+\mathrm{1}\right){e}^{−\left({x}+\mathrm{1}\right)} =\frac{\mathrm{1}}{{e}} \\ $$$$−\left({x}+\mathrm{1}\right)={W}\left(\frac{\mathrm{1}}{{e}}\right) \\ $$$$\Rightarrow{x}=−\mathrm{1}−{W}\left(\frac{\mathrm{1}}{{e}}\right)\approx−\mathrm{1}.\mathrm{278465} \\ $$
Commented by essojean last updated on 25/Mar/22
Que represente W???
$${Que}\:{represente}\:{W}??? \\ $$
Commented by mr W last updated on 25/Mar/22
Lambert W function
$${Lambert}\:{W}\:{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *