Question Number 164653 by mnjuly1970 last updated on 20/Jan/22
$$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:β\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{β\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\ $$$$\:\:\:\:\:\:ββββ \\ $$
Answered by Lordose last updated on 20/Jan/22
$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{tanh}^{β\mathrm{1}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}β\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:\overset{\mathrm{x}=\frac{\mathrm{1}β\mathrm{x}}{\mathrm{1}+\mathrm{x}}} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(β\mathrm{1}\right)^{\mathrm{n}β\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{x}^{\mathrm{n}β\mathrm{1}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\Omega\:\overset{\boldsymbol{\mathrm{IBP}}Γ\mathrm{2}} {=}\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{\mathrm{n}β\mathrm{1}} }{\mathrm{n}^{\mathrm{3}} }\:=\:\boldsymbol{\eta}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{3}\right) \\ $$$$\boldsymbol{\Omega}\:=\:\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{3}\right)\: \\ $$
Answered by Ar Brandon last updated on 20/Jan/22
$$ \\ $$$$\phi=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}\mathrm{tanh}^{β\mathrm{1}} \left({x}\right)}{{x}}{dx} \\ $$$$\:\:\:=\left[\frac{\mathrm{ln}^{\mathrm{3}} {x}}{\mathrm{3}}\mathrm{tanh}^{β\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} β\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{3}} {x}}{\mathrm{1}β{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=β\frac{\mathrm{1}}{\mathrm{3}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{β\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{ln}^{\mathrm{3}} {u}}{\mathrm{1}β{u}}{du}=\frac{\mathrm{1}}{\mathrm{48}}\psi^{\left(\mathrm{3}\right)} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:=\mathrm{2}\left(\zeta\left(\mathrm{4}\right)β\frac{\mathrm{1}}{\mathrm{16}}\zeta\left(\mathrm{4}\right)\right)=\frac{\mathrm{15}}{\mathrm{8}}\zeta\left(\mathrm{4}\right)=\frac{\mathrm{15}}{\mathrm{720}}\pi^{\mathrm{4}} \\ $$
Commented by mnjuly1970 last updated on 20/Jan/22
$$\:\:{verh}\:{nice}\:…{thank}\:{you} \\ $$$${sir}\:{brandon}… \\ $$