Menu Close

solve-0-1-ln-2-x-tanh-1-x-x-dx-0-1-tanh-1-x-2-1-x-




Question Number 164653 by mnjuly1970 last updated on 20/Jan/22
          solve    𝛗 = ∫_0 ^( 1)  ((ln^( 2) ( x ). tanh^( βˆ’1) ( x  ))/x)dx =?     Ξ©= ∫_0 ^( 1) (( (tanh^(βˆ’1) (x))^( 2) )/(1+x)) = ?        βˆ’βˆ’βˆ’βˆ’
solveΟ•=∫01ln2(x).tanhβˆ’1(x)xdx=?Ξ©=∫01(tanhβˆ’1(x))21+x=?βˆ’βˆ’βˆ’βˆ’
Answered by Lordose last updated on 20/Jan/22
  Ξ© = ∫_0 ^( 1) (((tanh^(βˆ’1) (x))^2 )/(1+x))dx  Ξ© = (1/4)∫_0 ^( 1) ((ln^2 (((1βˆ’x)/(1+x))))/(1+x))dx  Ξ© =^(x=((1βˆ’x)/(1+x))) (1/4)∫_0 ^( 1) ((ln^2 (x))/(1+x)) = (1/4)Ξ£_(n=1) ^∞ (βˆ’1)^(nβˆ’1) ∫_0 ^( 1) x^(nβˆ’1) ln^2 (x)dx  Ξ© =^(IBPΓ—2) (1/2)Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) )/n^3 ) = π›ˆ(3) = (3/8)𝛇(3)  𝛀 = (3/8)𝛇(3)
Ξ©=∫01(tanhβˆ’1(x))21+xdxΞ©=14∫01ln2(1βˆ’x1+x)1+xdxΞ©=x=1βˆ’x1+x14∫01ln2(x)1+x=14βˆ‘βˆžn=1(βˆ’1)nβˆ’1∫01xnβˆ’1ln2(x)dxΞ©=IBPΓ—212βˆ‘βˆžn=1(βˆ’1)nβˆ’1n3=Ξ·(3)=38ΞΆ(3)Ξ©=38ΞΆ(3)
Answered by Ar Brandon last updated on 20/Jan/22
  Ο†=∫_0 ^1 ((ln^2 xtanh^(βˆ’1) (x))/x)dx     =[((ln^3 x)/3)tanh^(βˆ’1) (x)]_0 ^1 βˆ’(1/3)∫_0 ^1 ((ln^3 x)/(1βˆ’x^2 ))dx     =βˆ’(1/3)βˆ™(1/2)βˆ™(1/8)∫_0 ^1 ((u^(βˆ’(1/2)) ln^3 u)/(1βˆ’u))du=(1/(48))ψ^((3)) ((1/2))     =2(ΞΆ(4)βˆ’(1/(16))ΞΆ(4))=((15)/8)ΞΆ(4)=((15)/(720))Ο€^4
Ο•=∫01ln2xtanhβˆ’1(x)xdx=[ln3x3tanhβˆ’1(x)]01βˆ’13∫01ln3x1βˆ’x2dx=βˆ’13β‹…12β‹…18∫01uβˆ’12ln3u1βˆ’udu=148ψ(3)(12)=2(ΞΆ(4)βˆ’116ΞΆ(4))=158ΞΆ(4)=15720Ο€4
Commented by mnjuly1970 last updated on 20/Jan/22
  verh nice ...thank you  sir brandon...
verhnice…thankyousirbrandon…

Leave a Reply

Your email address will not be published. Required fields are marked *