Menu Close

solve-0-1-lnx-1-x-2-dx-




Question Number 112313 by mathdave last updated on 07/Sep/20
solve  ∫_0 ^1 ((lnx)/( (√(1+x^2 ))))dx
$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$
Commented by mohammad17 last updated on 07/Sep/20
set:x=tan(r)⇒dx=sec^2 (r)dr  x=0⇒r=0  ,  x=1⇒r=(π/4)    ∫_0 ^( (π/4)) sec^3 (r)dr     by using the rule    ∫sec^n (x)dx=((sec^(n−1) (x))/((n−1)csc(x)))+(((n−2))/((n−1)))∫sec^(n−2) (x)dx    ∴∫_0 ^( (π/4)) sec^3 (r)dr=(((sec^2 (r)sin(r))/2))_0 ^( (π/4)) +(1/2)∫_0 ^( (π/4)) sec(r)dr    Note:∫sec(r)dr=ln∣sec(r)+tan(r)∣+C    ∴∫_0 ^( 1) (√(1+x^2 ))dx=(1/2)((√2) )+(1/2)ln∣(√2)+1∣=(((√2)+ln∣1+(√2)∣)/2)
$${set}:{x}={tan}\left({r}\right)\Rightarrow{dx}={sec}^{\mathrm{2}} \left({r}\right){dr} \\ $$$${x}=\mathrm{0}\Rightarrow{r}=\mathrm{0}\:\:,\:\:{x}=\mathrm{1}\Rightarrow{r}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {sec}^{\mathrm{3}} \left({r}\right){dr}\: \\ $$$$ \\ $$$${by}\:{using}\:{the}\:{rule} \\ $$$$ \\ $$$$\int{sec}^{{n}} \left({x}\right){dx}=\frac{{sec}^{{n}−\mathrm{1}} \left({x}\right)}{\left({n}−\mathrm{1}\right){csc}\left({x}\right)}+\frac{\left({n}−\mathrm{2}\right)}{\left({n}−\mathrm{1}\right)}\int{sec}^{{n}−\mathrm{2}} \left({x}\right){dx} \\ $$$$ \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {sec}^{\mathrm{3}} \left({r}\right){dr}=\left(\frac{{sec}^{\mathrm{2}} \left({r}\right){sin}\left({r}\right)}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\:\frac{\pi}{\mathrm{4}}} {\right)}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {sec}\left({r}\right){dr} \\ $$$$ \\ $$$${Note}:\int{sec}\left({r}\right){dr}={ln}\mid{sec}\left({r}\right)+{tan}\left({r}\right)\mid+{C} \\ $$$$ \\ $$$$\therefore\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}\:\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\sqrt{\mathrm{2}}+\mathrm{1}\mid=\frac{\sqrt{\mathrm{2}}+{ln}\mid\mathrm{1}+\sqrt{\mathrm{2}}\mid}{\mathrm{2}} \\ $$
Commented by mathdave last updated on 07/Sep/20
am so so sorry sir′s to change the phase of the  question.the one i type before i eluded  to include (lnx) ontop of  (√(1+x^2 )).all works  u guys did initially was all correct i  cant deny that fact.u guys re great  mathematicians
$${am}\:{so}\:{so}\:{sorry}\:{sir}'{s}\:{to}\:{change}\:{the}\:{phase}\:{of}\:{the} \\ $$$${question}.{the}\:{one}\:{i}\:{type}\:{before}\:{i}\:{eluded} \\ $$$${to}\:{include}\:\left(\mathrm{ln}{x}\right)\:{ontop}\:{of}\:\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }.{all}\:{works} \\ $$$${u}\:{guys}\:{did}\:{initially}\:{was}\:{all}\:{correct}\:{i} \\ $$$${cant}\:{deny}\:{that}\:{fact}.{u}\:{guys}\:{re}\:{great} \\ $$$${mathematicians} \\ $$
Answered by Dwaipayan Shikari last updated on 07/Sep/20
[(x/2)(√(1+x^2 ))+(1/2) log(x+(√(x^2 +1)))]_0 ^1 =(1/( (√2)))+(1/2)log(1+(√2))
$$\left[\frac{{x}}{\mathrm{2}}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\:{log}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$
Answered by MJS_new last updated on 07/Sep/20
∫_0 ^1 (√(x^2 +1))dx=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))dt]  =∫_1 ^(1+(√2)) ((t/4)+(1/(2t))+(1/(4t^3 )))dt=  =[(t^2 /8)+((ln t)/2)−(1/(8t^2 ))]_1 ^(1+(√2)) =(((√2)+ln (1+(√2)))/2)
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dt}\right] \\ $$$$=\underset{\mathrm{1}} {\overset{\mathrm{1}+\sqrt{\mathrm{2}}} {\int}}\left(\frac{{t}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}{t}}+\frac{\mathrm{1}}{\mathrm{4}{t}^{\mathrm{3}} }\right){dt}= \\ $$$$=\left[\frac{{t}^{\mathrm{2}} }{\mathrm{8}}+\frac{\mathrm{ln}\:{t}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}{t}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{\mathrm{1}+\sqrt{\mathrm{2}}} =\frac{\sqrt{\mathrm{2}}+\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}} \\ $$
Answered by mathdave last updated on 07/Sep/20
solution to ∫_0 ^1 ((lnx)/( (√(1+x^2 ))))dx  let x=sinhθ,dx=coshθdθ  and  sinh^(−1) (x)=ln(x+(√(1+x^2 )))  I=∫_(sinh^(−1) (0)) ^(sinh^(−1) (1)) ((ln(sinhθ))/(coshθ))dθ=∫_0 ^(sinh^(−1) (1)) ln(sinhθ)dθ  but sinhθ=((e^θ −e^(−θ) )/2)  I=∫_0 ^(ln(1+(√2))) ln(e^θ −e^(−θ) )dθ−∫_0 ^(ln(1+(√2))) ln(2)dθ  I=∫_0 ^(ln(1+(√2))) ln(e^θ )dθ+∫_0 ^(ln(1+(√2))) ln(1−e^(−θ) )dθ−∫_0 ^(ln(1+(√2))) ln(2)dθ  I=((ln^2 (1+(√2)))/2)−∫_0 ^(ln(1+(√2))) Σ_(k=0) ^∞ (e^(−2(k+1)θ) /(k+1))dθ−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)+(1/2)Σ_(k=0) ^∞ (1/(k+1))[((e^(−2(k+1)ln(1+(√2))) −1)/(k+1))]−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)+(1/2)Σ_(k=0) ^∞ (((1+(√2))^(−2(k+1)_ ) )/((k+1)^2 ))−(1/2)Σ_(k=0) ^∞ (1/((k+1)^2 ))−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)+(1/2)Σ_(k=1) ^∞ (1/(((1+(√2))^(2k) )/k^2 ))−(1/2)ζ2)−ln(2)ln(1+(√2))  but Li_2 (x)=Σ_(k=1) ^∞ (x^k /k^2 )  I=((ln^2 (1+(√2)))/2)+(1/2)Li_2 ((1/((1+(√2))^2 )))−(1/2)((π^2 /6))−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)+(1/2)Li_2 ((1/(3+2(√2))))−(π^2 /(12))−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)+(1/2)Li_2 (3−2(√2))−(π^2 /(12))−ln(2)ln(1+(√2))  I=((ln^2 (1+(√2)))/2)−(π^2 /(12))−ln(2)ln(1+(√2))+(1/2)Li_2 (3−2(√2))  ∵∫_0 ^1 ((lnx)/( (√(1+x^2 ))))dx=((ln^2 (1+(√2)))/2)−(π^2 /(12))−ln(2)ln(1+(√2))+(1/2)Li_2 (3−2(√2))  by mathdave(07/09/2020)
$${solution}\:{to}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$$${let}\:{x}=\mathrm{sinh}\theta,{dx}=\mathrm{cosh}\theta{d}\theta\:\:{and} \\ $$$$\mathrm{sinh}^{−\mathrm{1}} \left({x}\right)=\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right) \\ $$$${I}=\int_{\mathrm{sinh}^{−\mathrm{1}} \left(\mathrm{0}\right)} ^{\mathrm{sinh}^{−\mathrm{1}} \left(\mathrm{1}\right)} \frac{\mathrm{ln}\left(\mathrm{sinh}\theta\right)}{\mathrm{cosh}\theta}{d}\theta=\int_{\mathrm{0}} ^{\mathrm{sinh}^{−\mathrm{1}} \left(\mathrm{1}\right)} \mathrm{ln}\left(\mathrm{sinh}\theta\right){d}\theta \\ $$$${but}\:\mathrm{sinh}\theta=\frac{{e}^{\theta} −{e}^{−\theta} }{\mathrm{2}} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \mathrm{ln}\left({e}^{\theta} −{e}^{−\theta} \right){d}\theta−\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \mathrm{ln}\left(\mathrm{2}\right){d}\theta \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \mathrm{ln}\left({e}^{\theta} \right){d}\theta+\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \mathrm{ln}\left(\mathrm{1}−{e}^{−\theta} \right){d}\theta−\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \mathrm{ln}\left(\mathrm{2}\right){d}\theta \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{−\mathrm{2}\left({k}+\mathrm{1}\right)\theta} }{{k}+\mathrm{1}}{d}\theta−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}+\mathrm{1}}\left[\frac{{e}^{−\mathrm{2}\left({k}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} −\mathrm{1}}{{k}+\mathrm{1}}\right]−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{−\mathrm{2}\left({k}+\mathrm{1}\right)_{} } }{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\left.{I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}{k}} }{{k}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\mathrm{2}}\zeta\mathrm{2}\right)−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${but}\:{Li}_{\mathrm{2}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}} }{{k}^{\mathrm{2}} } \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right)−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${I}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\mathrm{ln}\left(\mathrm{2}\right)\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${by}\:{mathdave}\left(\mathrm{07}/\mathrm{09}/\mathrm{2020}\right) \\ $$
Commented by Tinku Tara last updated on 08/Sep/20
mathdave, please stop using abusive  language on this forum immediately.
$$\mathrm{mathdave},\:\mathrm{please}\:\mathrm{stop}\:\mathrm{using}\:\mathrm{abusive} \\ $$$$\mathrm{language}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum}\:\mathrm{immediately}. \\ $$
Commented by Her_Majesty last updated on 07/Sep/20
∫(√(1+x^2 ))dx with x=sinht leads to  ∫cosh^2 t dt =(1/2)(t+cosht sinht)=  =(1/2)(sinh^(−1) x+x(√(x^2 +1)))+C  no need for such a long tour through the  lowlands of math
$$\int\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{with}\:{x}={sinht}\:{leads}\:{to} \\ $$$$\int{cosh}^{\mathrm{2}} {t}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\left({t}+{cosht}\:{sinht}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({sinh}^{−\mathrm{1}} {x}+{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)+{C} \\ $$$${no}\:{need}\:{for}\:{such}\:{a}\:{long}\:{tour}\:{through}\:{the} \\ $$$${lowlands}\:{of}\:{math} \\ $$
Commented by MJS_new last updated on 07/Sep/20
you cannot hold it back it seems. sad.
$$\mathrm{you}\:\mathrm{cannot}\:\mathrm{hold}\:\mathrm{it}\:\mathrm{back}\:\mathrm{it}\:\mathrm{seems}.\:\mathrm{sad}. \\ $$
Commented by MJS_new last updated on 07/Sep/20
and you too cannot hold it back.  the two of you are perfect mirrors for one  another.
$$\mathrm{and}\:\mathrm{you}\:\mathrm{too}\:\mathrm{cannot}\:\mathrm{hold}\:\mathrm{it}\:\mathrm{back}. \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{of}\:\mathrm{you}\:\mathrm{are}\:\mathrm{perfect}\:\mathrm{mirrors}\:\mathrm{for}\:\mathrm{one} \\ $$$$\mathrm{another}. \\ $$
Commented by mathdave last updated on 07/Sep/20
nt that i cant hold back but she is doing  has if she monopoly of knowledge
$${nt}\:{that}\:{i}\:{cant}\:{hold}\:{back}\:{but}\:{she}\:{is}\:{doing} \\ $$$${has}\:{if}\:{she}\:{monopoly}\:{of}\:{knowledge} \\ $$
Commented by MJS_new last updated on 07/Sep/20
Mr Mathdave, it′s exactly the same with  you. scroll down and read your own comments!
$$\mathrm{Mr}\:\mathrm{Mathdave},\:\mathrm{it}'\mathrm{s}\:\mathrm{exactly}\:\mathrm{the}\:\mathrm{same}\:\mathrm{with} \\ $$$$\mathrm{you}.\:\mathrm{scroll}\:\mathrm{down}\:\mathrm{and}\:\mathrm{read}\:\mathrm{your}\:\mathrm{own}\:\mathrm{comments}! \\ $$
Commented by mathdave last updated on 07/Sep/20
has u have the right to stay in d forum  dat is how i have the full right to stay  on this forum bcos nobody is  subscribing for anybody
$${has}\:{u}\:{have}\:{the}\:{right}\:{to}\:{stay}\:{in}\:{d}\:{forum} \\ $$$${dat}\:{is}\:{how}\:{i}\:{have}\:{the}\:{full}\:{right}\:{to}\:{stay} \\ $$$${on}\:{this}\:{forum}\:{bcos}\:{nobody}\:{is} \\ $$$${subscribing}\:{for}\:{anybody}\: \\ $$
Commented by mathdave last updated on 07/Sep/20
sorry mr mjs d question was a typo,i  already corrected it
$${sorry}\:{mr}\:{mjs}\:{d}\:{question}\:{was}\:{a}\:{typo},{i} \\ $$$${already}\:{corrected}\:{it}\: \\ $$
Commented by mathdave last updated on 07/Sep/20
if u dont like u re d one that will leave  for me in ds group
$${if}\:{u}\:{dont}\:{like}\:{u}\:{re}\:{d}\:{one}\:{that}\:{will}\:{leave} \\ $$$${for}\:{me}\:{in}\:{ds}\:{group} \\ $$
Commented by ajfour last updated on 07/Sep/20
stay in the forum, with some decent  conversation and words, i have been  on the forum for some yesrs; never  witnessed anyone using abusive  words..kindly you too, abide by the  same decorum..
$${stay}\:{in}\:{the}\:{forum},\:{with}\:{some}\:{decent} \\ $$$${conversation}\:{and}\:{words},\:{i}\:{have}\:{been} \\ $$$${on}\:{the}\:{forum}\:{for}\:{some}\:{yesrs};\:{never} \\ $$$${witnessed}\:{anyone}\:{using}\:{abusive} \\ $$$${words}..{kindly}\:{you}\:{too},\:{abide}\:{by}\:{the} \\ $$$${same}\:{decorum}.. \\ $$
Commented by MJS_new last updated on 07/Sep/20
The question wasn′t a typo, you have done  this before. You want to make others look  like fools but most of us here have become  friends over the years... no more to tell you,  I′ll ignore you from now on.
$$\mathrm{The}\:\mathrm{question}\:\mathrm{wasn}'\mathrm{t}\:\mathrm{a}\:\mathrm{typo},\:\mathrm{you}\:\mathrm{have}\:\mathrm{done} \\ $$$$\mathrm{this}\:\mathrm{before}.\:\mathrm{You}\:\mathrm{want}\:\mathrm{to}\:\mathrm{make}\:\mathrm{others}\:\mathrm{look} \\ $$$$\mathrm{like}\:\mathrm{fools}\:\mathrm{but}\:\mathrm{most}\:\mathrm{of}\:\mathrm{us}\:\mathrm{here}\:\mathrm{have}\:\mathrm{become} \\ $$$$\mathrm{friends}\:\mathrm{over}\:\mathrm{the}\:\mathrm{years}…\:\mathrm{no}\:\mathrm{more}\:\mathrm{to}\:\mathrm{tell}\:\mathrm{you}, \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{ignore}\:\mathrm{you}\:\mathrm{from}\:\mathrm{now}\:\mathrm{on}. \\ $$
Commented by mathmax by abdo last updated on 07/Sep/20
how are sir mjs ?
$$\mathrm{how}\:\mathrm{are}\:\mathrm{sir}\:\mathrm{mjs}\:? \\ $$
Commented by Tawa11 last updated on 06/Sep/21
great sir
$$\mathrm{great}\:\mathrm{sir} \\ $$
Answered by mathmax by abdo last updated on 07/Sep/20
I =∫_0 ^1 (√(1+x^2 ))dx  by parts I =[x(√(1+x^2 ))]_0 ^1 −∫_0 ^1 x  ((2x)/(2(√(1+x^2 )))) dx  =(√2)−∫_0 ^1  (x^2 /( (√(1+x^2 )))) dx  =(√2)−∫_0 ^1  ((1+x^2 −1)/( (√(1+x^2 )))) dx  =(√2)−∫_0 ^1 (√(1+x^2 )) +∫_0 ^1  (dx/( (√(1+x^2 )))) ⇒2I =(√2)+[ln(x+(√(1+x^2 ))]_0 ^1   =(√2)+ ln(1+(√2)) ⇒ I =((√2)/2) +(1/2)ln(1+(√2))
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{I}\:=\left[\mathrm{x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\:\:\frac{\mathrm{2x}}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx} \\ $$$$=\sqrt{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:\:=\sqrt{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx} \\ $$$$=\sqrt{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\:\Rightarrow\mathrm{2I}\:=\sqrt{\mathrm{2}}+\left[\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{\mathrm{1}} \right. \\ $$$$=\sqrt{\mathrm{2}}+\:\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\Rightarrow\:\mathrm{I}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$
Answered by 1549442205PVT last updated on 10/Sep/20
Put (1/x^2 )+1=t^2 ⇒−((2dx)/x^3 )=2tdt  ⇒dx=−x^3 tdt,(√(1+x^2 ))=xt.Hence,  F=∫_0 ^1 (√(1+x^2 ))dx=∫_(√2) ^∞ x^4 t^2 dt=∫_(√2) ^∞ ((t^2 dt)/((t^2 −1)^2 ))  =∫_(√2) ^∞ (((t^2 −1)+1)/((t^2 −1)^2 ))dt=∫_(√2) ^∞ (dt/(t^2 −1))+∫_(√2) ^∞ (dt/((t^2 −1)^2 ))  =∫_(√2) ^∞ (A+B)  A=(1/(t^2 −1))=(1/2)((1/(t−1))−(1/(t+1))).Put(1/(t−1))=a,(1/(t+1))=b  ⇒A=ab=(1/2)(a−b)  we get B=A^2 =[(1/2)(a−b)]^2 =(1/4)(a^2 +b^2 )  −(1/2)ab=(1/4)(a^2 +b^2 )−(1/4)(a−b).Hence  ⇒A+B=(1/4)(a^2 +b^2 )+(1/4)(a−b)=(1/4)[(1/((t−1)^2 ))+(1/((t+1)^2 ))]+(1/4)((1/(t−1))−(1/(t+1)))  F=∫_(√2) ^∞ (A+B)=(1/4)∫_(√2) ^∞ (dt/((t−1)^2 ))+(1/4)∫_(√2) ^∞ (dt/((t+1)^2 ))  +(1/4)∫_(√2) ^∞ ((1/(t−1))−(1/(t+1)))dt  =[−(1/(4(t−1)))−(1/(4(t+1)))]_(√2) ^∞ +(1/4)ln∣((t−1)/(t+1))∣_(√2) ^∞   =−(1/(4((√2)−1)))−(1/(4((√2)+1)))−(1/4)ln(((√2)−1)/( (√2)+1))  =(1/4)((√2)+1+(√2)−1)−(1/4)ln((1/(((√2)+1)^2 )))  =((√2)/2)+(1/2)ln((√2)+1)
$$\mathrm{Put}\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }+\mathrm{1}=\mathrm{t}^{\mathrm{2}} \Rightarrow−\frac{\mathrm{2dx}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{2tdt} \\ $$$$\Rightarrow\mathrm{dx}=−\mathrm{x}^{\mathrm{3}} \mathrm{tdt},\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\mathrm{xt}.\mathrm{Hence}, \\ $$$$\mathrm{F}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\sqrt{\mathrm{2}}} ^{\infty} \mathrm{x}^{\mathrm{4}} \mathrm{t}^{\mathrm{2}} \mathrm{dt}=\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\mathrm{t}^{\mathrm{2}} \mathrm{dt}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt}=\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}+\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\mathrm{dt}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\int_{\sqrt{\mathrm{2}}} ^{\infty} \left(\mathrm{A}+\mathrm{B}\right) \\ $$$$\mathrm{A}=\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right).\mathrm{Put}\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}=\mathrm{a},\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}=\mathrm{b} \\ $$$$\Rightarrow\mathrm{A}=\mathrm{ab}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}−\mathrm{b}\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{B}=\mathrm{A}^{\mathrm{2}} =\left[\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}−\mathrm{b}\right)\right]^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ab}=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{a}−\mathrm{b}\right).\mathrm{Hence} \\ $$$$\Rightarrow\mathrm{A}+\mathrm{B}=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{a}−\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{1}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} }\right]+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right) \\ $$$$\mathrm{F}=\int_{\sqrt{\mathrm{2}}} ^{\infty} \left(\mathrm{A}+\mathrm{B}\right)=\frac{\mathrm{1}}{\mathrm{4}}\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\mathrm{dt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\int_{\sqrt{\mathrm{2}}} ^{\infty} \frac{\mathrm{dt}}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$+\frac{\mathrm{1}}{\mathrm{4}}\int_{\sqrt{\mathrm{2}}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{1}}\right)\mathrm{dt} \\ $$$$=\left[−\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{t}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{t}+\mathrm{1}\right)}\right]_{\sqrt{\mathrm{2}}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\frac{\mathrm{t}−\mathrm{1}}{\mathrm{t}+\mathrm{1}}\mid_{\sqrt{\mathrm{2}}} ^{\infty} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{\mathrm{2}}+\mathrm{1}+\sqrt{\mathrm{2}}−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left(\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *