Question Number 110964 by mathdave last updated on 01/Sep/20
$${solve}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$
Answered by mathdave last updated on 01/Sep/20
$${enjoy}\:{my}\:{solution}\: \\ $$$${let}\:{x}=\mathrm{tan}{y},{dx}=\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {y}\right){dy} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{tan}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right)}{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {y}\right)^{\mathrm{3}} }×\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {y}\right){dy} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{tan}^{\mathrm{2}} {y}\mathrm{ln}\left(\mathrm{tan}{y}\right)}{\mathrm{sec}^{\mathrm{4}} {y}}{dy}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{tan}^{\mathrm{2}} {y}\mathrm{ln}\left(\mathrm{tan}{y}\right)\mathrm{cos}^{\mathrm{4}} {y}}{\mathrm{1}}{dy} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{sin}{y}\mathrm{cos}{y}\right)^{\mathrm{2}} \mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${but}\:\mathrm{sin}{y}\mathrm{cos}{y}=\frac{\mathrm{sin2}{y}}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sin}^{\mathrm{2}} \mathrm{2}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${but}\:\mathrm{cos4}{y}=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \mathrm{2}{y},\mathrm{sin}^{\mathrm{2}} \mathrm{2}{y}=\frac{\mathrm{1}−\mathrm{cos4}{y}}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\mathrm{1}−\mathrm{cos4}{y}\right)\mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tan}{y}\right)−\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos4}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${let}\:\:{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos4}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${using}\:{IBP}\:\:\:\:{but}\:{let}\: \\ $$$$\int{dv}=\int\mathrm{cos4}{ydy},{v}=\frac{\mathrm{sin4}{y}}{\mathrm{4}},{u}=\mathrm{ln}\left(\mathrm{tan}{y}\right),{du}=\frac{\mathrm{sec}^{\mathrm{2}} {y}}{\mathrm{tan}{y}}=\frac{\mathrm{1}}{\mathrm{sin}{y}\mathrm{cos}{y}}=\frac{\mathrm{2}}{\mathrm{sin2}{y}} \\ $$$${B}=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{sin4}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} −\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{2sin4}{y}}{\mathrm{sin2}{y}}{dy} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sin4}{y}}{\mathrm{sin2}{y}}{dy}\:\:\:\:\left({let}\:\mathrm{2}{y}={x},{dy}=\frac{{dx}}{\mathrm{2}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin2}{x}}{\mathrm{sin}{x}}{dx}=−\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2sin}{x}\mathrm{cos}{x}}{\mathrm{sin}{x}}{dx} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}{xdx}=−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{sin}{x}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\because{B}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos4}{y}\mathrm{ln}\left(\mathrm{tan}{y}\right){dy}=−\frac{\mathrm{1}}{\mathrm{2}}………\left(\mathrm{1}\right) \\ $$$${then}\:{letA}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tan}{y}\right){dy} \\ $$$${let}\:{x}=\mathrm{tan}{y},{dy}=\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:\:\left({using}\:{series}\:{summation}\right) \\ $$$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \mathrm{ln}{xdx}=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} .{x}^{{a}} {dx}\mid_{{a}=\mathrm{0}} \\ $$$$\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} {A}\left({a}\right)=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\partial}{\partial{a}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}+{a}} {dx} \\ $$$$\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} {A}\left({a}\right)=\left(−\mathrm{1}\right)^{{n}} \frac{\partial}{\partial{a}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{1}}{\left(\mathrm{2}{n}+{a}+\mathrm{1}\right)}\right] \\ $$$${A}\left(\mathrm{0}\right)={A}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=−{G}\left({catalan}\:{constant}\right)…..\left(\mathrm{2}\right) \\ $$$${but}\:{I}=\frac{\mathrm{1}}{\mathrm{8}}{A}−\frac{\mathrm{1}}{\mathrm{8}}{B}=\left[−\frac{{G}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{8}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\right]=\left[\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{8}}{G}\right] \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx}=\left[\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{8}}{G}\right] \\ $$$${solution}\:{by}\:{mathdave}\left(\mathrm{1}/\mathrm{09}/\mathrm{2020}\right) \\ $$
Commented by mnjuly1970 last updated on 01/Sep/20
$${okay}.. \\ $$