Menu Close

solve-0-pi-4-ln-1-sinx-dx-




Question Number 114196 by mathdave last updated on 17/Sep/20
solve  ∫_0 ^(π/4) ln(1+sinx)dx
solve0π4ln(1+sinx)dx
Commented by Dwaipayan Shikari last updated on 20/Sep/20
∫_0 ^(π/4) (−1)^n Σ_(n=1) ^∞ ((sin^n x)/n)  Σ^∞ (−1)^n ∫_0 ^(π/4) (((e^(ix) −e^(−ix) )^n )/(2^n i^n n))dx  Σ_(n=1) ^∞ (−1)^n (e^(inx) /(2^n .i^n n))∫_0 ^(π/4) (1−e^(−2ix) )^n   Σ_(n=1) ^∞ (−1)^n (1/n) (e^(inx) /(2^n i^n ))((π/4)+(n/(2i))e^(−2ix) +.....)
0π4(1)nn=1sinnxn(1)n0π4(eixeix)n2ninndxn=1(1)neinx2n.inn0π4(1e2ix)nn=1(1)n1neinx2nin(π4+n2ie2ix+..)
Answered by mathmax by abdo last updated on 19/Sep/20
let take a try with this integral  I =∫_0 ^(π/4) ln(1+cos((π/2)−x))dx =∫_0 ^(π/4) ln(2cos^2 ((π/4)−(x/2)))dx  =(π/4)ln(2)+2 ∫_0 ^(π/4)  ln(cos((π/4)−(x/2)))dx  changement (π/4)−(x/2)=t  give ∫_0 ^(π/4)  ln(cos((π/4)−(x/2)))dx =∫_(π/4) ^(π/8) ln(cost)(−2dt)  =2 ∫_(π/8) ^(π/4)  ln(cost)dt  =2{ [t ln(cost)]_(π/8) ^(π/4) −∫_(π/8) ^(π/4)  t×((−sint)/(cost)) dt}  =2{(π/4)ln((1/( (√2))))−(π/8)ln(((√(2+(√2)))/2)) } +2 ∫_(π/8) ^(π/4)  t tant dt  ∫_(π/8) ^(π/4)  t tant dt =_(tant =u)   ∫_((√2)−1) ^1  ((u arctanu)/(1+u^2 )) du  =[(1/2)ln(1+u^2 )arctanu]_((√2)−1) ^1 −∫_((√2)−1) ^1  (1/2)ln(1+u^2 )×(du/(1+u^2 ))  =(1/2)ln(2)(π/4)−(1/2)ln(4−2(√2))×(π/8)−(1/2) ∫_((√2)−1) ^1  ((ln(1+u^2 ))/(1+u^2 )) du  but ∫_((√2)−1) ^1  ((ln(1+u^2 ))/(1+u^2 ))du =∫_0 ^1  ((ln(1+u^2 ))/(1+u^2 ))du−∫_0 ^((√2)−1)  ((ln(1+u^2 ))/(1+u^2 ))du  ∫_0 ^1  ((ln(1+u^2 ))/(1+u^2 ))du =_(u=tanθ)   ∫_0 ^(π/4)  ((ln((1/(cos^2 θ))))/(1+tan^2 θ))(1+tan^2 θ)dθ  =−2∫_0 ^(π/4) ln(cosθ)(the value of this integral is known see the  platform i dont remember its value)  ∫_0 ^((√2)−1)    ((ln(1+u^2 ))/(1+u^2 ))du =∫_0 ^((√2)−1) ln(1+u^2 )Σ_(n=0) ^∞ (−1)^n  u^(2n)  du  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^((√2)−1) u^(2n)  ln(1+u^2 )du....be continued...
lettakeatrywiththisintegralI=0π4ln(1+cos(π2x))dx=0π4ln(2cos2(π4x2))dx=π4ln(2)+20π4ln(cos(π4x2))dxchangementπ4x2=tgive0π4ln(cos(π4x2))dx=π4π8ln(cost)(2dt)=2π8π4ln(cost)dt=2{[tln(cost)]π8π4π8π4t×sintcostdt}=2{π4ln(12)π8ln(2+22)}+2π8π4ttantdtπ8π4ttantdt=tant=u211uarctanu1+u2du=[12ln(1+u2)arctanu]21121112ln(1+u2)×du1+u2=12ln(2)π412ln(422)×π812211ln(1+u2)1+u2dubut211ln(1+u2)1+u2du=01ln(1+u2)1+u2du021ln(1+u2)1+u2du01ln(1+u2)1+u2du=u=tanθ0π4ln(1cos2θ)1+tan2θ(1+tan2θ)dθ=20π4ln(cosθ)(thevalueofthisintegralisknownseetheplatformidontrememberitsvalue)021ln(1+u2)1+u2du=021ln(1+u2)n=0(1)nu2ndu=n=0(1)n021u2nln(1+u2)du.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *