solve-0-pi-xcosx-1-sin-2-x-dx- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 118242 by mathdave last updated on 16/Oct/20 solve∫0πxcosx(1+sin2x)dx Answered by TANMAY PANACEA last updated on 16/Oct/20 ★∫cosx1+sin2xdx=∫d(sinx)1+sin2x=tan−1(sinx)★now∫0πxcosx1+sin2xdx∣xtan−1(sinx)∣0π−∫0π1×tan−1(sinx)dx0−∫0πtan−1(sinx)dxf(x)=tan−1(sinx)f(0)=0f(π)=0sotan−1(sinx)makealoopinx∈[0,π]inbetween[0,π]tan−1(sinx)musthavemaximumvalue…atx=π2tan−1(sinπ2)=π4∫0ππ4dx>∫0πtan−1(sinx)dx>0π24>∫0πtan−1(sinx)dx>0(−1)π24<∫0π−tan−1(sinx)dx<0soI=∫0πxcosx(1+sin2x)=∫0π−tan−1(sinx)dx−π24<I<0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-183776Next Next post: Question-52708 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.