Menu Close

solve-0-pi-xcosx-1-sin-2-x-dx-




Question Number 118242 by mathdave last updated on 16/Oct/20
solve  ∫_0 ^π ((xcosx)/((1+sin^2 x)))dx
solve0πxcosx(1+sin2x)dx
Answered by TANMAY PANACEA last updated on 16/Oct/20
★∫((cosx)/(1+sin^2 x))dx=∫((d(sinx))/(1+sin^2 x))=tan^(−1) (sinx)★  now  ∫_0 ^π ((xcosx)/(1+sin^2 x))dx  ∣xtan^(−1) (sinx)∣_0 ^π −∫_0 ^π 1×tan^(−1) (sinx)dx  0−∫_0 ^π tan^(−1) (sinx)dx  f(x)=tan^(−1) (sinx)  f(0)=0  f(π)=0  so tan^(−1) (sinx)  make a loop in x∈ [0,π]  in between [0,π] tan^(−1) (sinx) must have maximum  value ...at x=(π/2)     tan^(−1) (sin(π/2))=(π/4)   ∫_0 ^π (π/4)dx>∫_0 ^π tan^(−1) (sinx)dx>0  (π^2 /4)>∫_0 ^π tan^(−1) (sinx)dx>0  (−1)(π^2 /4)<∫_0 ^π −tan^(−1) (sinx)dx<0  so I=∫_0 ^π ((xcosx)/((1+sin^2 x)))=∫_0 ^π −tan^(−1) (sinx)dx  ((−π^2 )/4)<I<0
cosx1+sin2xdx=d(sinx)1+sin2x=tan1(sinx)now0πxcosx1+sin2xdxxtan1(sinx)0π0π1×tan1(sinx)dx00πtan1(sinx)dxf(x)=tan1(sinx)f(0)=0f(π)=0sotan1(sinx)makealoopinx[0,π]inbetween[0,π]tan1(sinx)musthavemaximumvalueatx=π2tan1(sinπ2)=π40ππ4dx>0πtan1(sinx)dx>0π24>0πtan1(sinx)dx>0(1)π24<0πtan1(sinx)dx<0soI=0πxcosx(1+sin2x)=0πtan1(sinx)dxπ24<I<0

Leave a Reply

Your email address will not be published. Required fields are marked *