Menu Close

solve-1-0-ln-2-e-x-e-4-x-2-dx-pi-k-e-2-k-2-0-ln-3-x-e-2




Question Number 149673 by mnjuly1970 last updated on 06/Aug/21
   solve ::  [ 1]    𝛗 := ∫_0 ^(  ∞ ) ((ln^( 2)  (e x ))/(e^( 4)  +x^( 2) )) dx =((π k)/e^( 2) )                              k:= ?                    [ 2 ]   Ω := ∫_(0 ) ^( ∞)  (( ln^( 3)  (x ))/( e^( 2) + x^( 2) )) dx = ?
solve::[1]\boldsymbolϕ:=0ln2(ex)e4+x2dx=πke2k:=?[2]Ω:=0ln3(x)e2+x2dx=?
Answered by mathmax by abdo last updated on 06/Aug/21
Φ=∫_0 ^∞  ((ln^2 (ex))/(x^2  +e^4 ))dx  changement x=e^2 t give  Φ=∫_0 ^∞  ((ln^2 (e^3 t))/(e^4 t^2  +e^4 ))(e^2 dt) =(1/e^2 )∫_0 ^∞   (((3+lnt)^2 )/(t^2  +1))dt  ⇒e^2 Φ=∫_0 ^∞  ((ln^2 t+6lnt +9)/(t^2  +1))dt  =∫_0 ^∞  ((ln^2 t)/(1+t^2 ))dt+6∫_0 ^∞  ((lnt)/(t^2  +1))dt +9∫_0 ^∞  (dt/(t^2  +1))  ∫_0 ^∞  ((lnt)/(t^2  +1))dt=0(proved)   ,∫_0 ^∞  (dt/(t^(2 ) +1))=(π/2)  f(a)=∫_0 ^∞  (t^a /(1+t^2 ))dt  =∫_0 ^∞  (e^(alnt) /(1+t^2 ))dt ⇒  f^′ (a)=∫_0 ^∞ ((lnt e^(alnt) )/(1+t^2 ))dt ⇒f^((2)) (a)=∫_0 ^∞  ((t^a ln^2 t)/(t^2  +1))dt ⇒  f^((2)) (0) =∫_0 ^∞  ((ln^2 t)/(t^2  +1))dt  changement t^2 =y give t=y^(1/2)   f(a)=∫_0 ^∞  (t^(a/2) /(1+y))(1/2)y^((1/2)−1)  dy =(1/2)∫_0 ^∞  (t^(((a+1)/2)−1) /(1+y))dy  =(1/2)×(π/(sin((((a+1)/2))π))) =(π/(2cos(((πa)/2)))) ⇒  f^′ (a)=(π/2)(−(((π/2)sin(((πa)/2)))/(cos^2 (((πa)/2)))))=−(π^2 /4)×((sin(((πa)/2)))/(cos^2 (((πa)/2)))) ⇒  f^((2)) (a)=−(π^2 /4){(((π/2)cos(((πa)/2))cos^2 (((πa)/2))+2.(π/2)sin(((πa)/2))cos(((πa)/2)))/(cos^4 (((πa)/2))))}  =−(π^3 /8){((cos^2 (((πa)/2))+2sin(((πa)/2)))/(cos^3 (((πa)/2))))} ⇒f^((2)) (0)=−(π^3 /8) ⇒  e^2 Φ=−(π^3 /8)+((9π)/2) ⇒Φ=(π/e^2 )(−(π^2 /8)+(9/2))=((πk)/e^2 ) ⇒k=(9/2)−(π^2 /8)
Φ=0ln2(ex)x2+e4dxchangementx=e2tgiveΦ=0ln2(e3t)e4t2+e4(e2dt)=1e20(3+lnt)2t2+1dte2Φ=0ln2t+6lnt+9t2+1dt=0ln2t1+t2dt+60lntt2+1dt+90dtt2+10lntt2+1dt=0(proved),0dtt2+1=π2f(a)=0ta1+t2dt=0ealnt1+t2dtf(a)=0lntealnt1+t2dtf(2)(a)=0taln2tt2+1dtf(2)(0)=0ln2tt2+1dtchangementt2=ygivet=y12f(a)=0ta21+y12y121dy=120ta+1211+ydy=12×πsin((a+12)π)=π2cos(πa2)f(a)=π2(π2sin(πa2)cos2(πa2))=π24×sin(πa2)cos2(πa2)f(2)(a)=π24{π2cos(πa2)cos2(πa2)+2.π2sin(πa2)cos(πa2)cos4(πa2)}=π38{cos2(πa2)+2sin(πa2)cos3(πa2)}f(2)(0)=π38e2Φ=π38+9π2Φ=πe2(π28+92)=πke2k=92π28
Commented by Ar Brandon last updated on 07/Aug/21
Bravo ��
Commented by Tawa11 last updated on 06/Aug/21
great
great
Commented by Ar Brandon last updated on 06/Aug/21
Sir, f(a)=(π/(2cos(((πa)/2))))⇒f ′(a)=(π^2 /4)∙((sin((π/2)a))/(cos^2 ((π/2)a)))   instead of −(π^2 /4)∙((sin((π/2)a))/(cos^2 ((π/2)a))). Please check !  Line 10 →Line 11
Sir,f(a)=π2cos(πa2)f(a)=π24sin(π2a)cos2(π2a)insteadofπ24sin(π2a)cos2(π2a).Pleasecheck!Line10Line11
Commented by mathmax by abdo last updated on 07/Aug/21
sorry f^′ (a)=(π^2 /4)×((sin(((πa)/2)))/(cos^2 (((πa)/2)))) ⇒  f^((2)) (a)=(π^3 /8)×((cos^2 (((πa)/2))+2sin(((πa)/2)))/(cos^3 (((πa)/2)))) ⇒f^((2)) (0)=(π^3 /8) ⇒  e^2 Φ=(π^3 /8)+((9π)/2) ⇒Φ=(π/e^2 )((π^2 /8)+(9/2)) ⇒k=(π^2 /8)+(9/2)
sorryf(a)=π24×sin(πa2)cos2(πa2)f(2)(a)=π38×cos2(πa2)+2sin(πa2)cos3(πa2)f(2)(0)=π38e2Φ=π38+9π2Φ=πe2(π28+92)k=π28+92
Commented by mathmax by abdo last updated on 07/Aug/21
yes error of sing...!
yeserrorofsing!
Answered by Ar Brandon last updated on 06/Aug/21
φ=∫_0 ^∞ ((ln^2 (ex))/(e^4 +x^2 ))dx=∫_0 ^∞ ((1+2lnx+ln^2 x)/(e^4 +x^2 ))dx     =(1/e^2 )∫_0 ^∞ ((1+2ln(e^2 u)+ln^2 (e^2 u))/(1+u^2 ))du     =(π/(2e^2 ))+(1/e^2 )∫_0 ^∞ ((4+2lnu+4+4lnu+ln^2 u)/(1+u^2 ))du     =(π/(2e^2 ))+((4π)/e^2 )+(1/e^2 )∫_0 ^∞ ((6lnu+ln^2 u)/(1+u^2 ))du     =((9π)/(2e^2 ))+(6/e^2 )∙(∂/∂α)∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du+(1/e^2 )∙(∂^2 /∂α^2 )∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du     =((9π)/(2e^2 ))+(3/e^2 )∙(∂/∂α)∣_(α=1) (π/(sin(((πα)/2))))+(1/(2e^2 ))∙(∂^2 /∂α^2 )∣_(α=1) (π/(sin(((πα)/2))))     =((9π)/(2e^2 ))−((3π^2 )/(2e^2 ))∣_(α=1) cosec(((πα)/2))cot(((πα)/2))          +(π^3 /(8e^2 ))∣_(α=1) cosec^3 (((πα)/2))+cosec(((πα)/2))cot^2 (((πα)/2))     =((9π)/(2e^2 ))+(π^3 /(8e^2 ))=(π/e^2 )((9/2)+(π^2 /( 8))), k=(9/2)+(π^2 /8)
ϕ=0ln2(ex)e4+x2dx=01+2lnx+ln2xe4+x2dx=1e201+2ln(e2u)+ln2(e2u)1+u2du=π2e2+1e204+2lnu+4+4lnu+ln2u1+u2du=π2e2+4πe2+1e206lnu+ln2u1+u2du=9π2e2+6e2αα=10uα11+u2du+1e22α2α=10uα11+u2du=9π2e2+3e2αα=1πsin(πα2)+12e22α2α=1πsin(πα2)=9π2e23π22e2α=1cosec(πα2)cot(πα2)+π38e2α=1cosec3(πα2)+cosec(πα2)cot2(πα2)=9π2e2+π38e2=πe2(92+π28),k=92+π28
Commented by Ar Brandon last updated on 06/Aug/21
It was a pleasure, Sir ��
Commented by mnjuly1970 last updated on 06/Aug/21
very nice mr brandon..
verynicemrbrandon..
Answered by Ar Brandon last updated on 06/Aug/21
Ω=∫_0 ^∞ ((ln^3 x)/(e^2 +x^2 ))dx=(1/e)∫_0 ^∞ ((ln^3 (eu))/(1+u^2 ))du      =(1/e)∫_0 ^∞ ((1+3lnu+3ln^2 u+ln^3 u)/(1+u^2 ))du      =(π/(2e))+((3π^3 )/(8e))+(1/e)∫_0 ^∞ ((ln^3 u)/(1+u^2 ))du      =(((4+3π^2 )π)/(8e))+(1/e)∙(∂^3 /∂α^3 )∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du      =(((4+3π^2 )π)/(8e))+(1/e)∙(∂^3 /∂α^3 )∣_(α=1) (π/(sin(((πα)/2))))      =(((4+3π^2 )π)/(8e))−(π/(8e))∣_(α=1) (((3π)/2)cosec^2 (((πα)/2))cosec(((πα)/2))cot(((πα)/2))            +π(cosec^3 (((πα)/2))cot(((πα)/2))+(1/2)cosec(((πα)/2))cot^3 (((πα)/2)))       =(((4+3π^2 )π)/(8e))
Ω=0ln3xe2+x2dx=1e0ln3(eu)1+u2du=1e01+3lnu+3ln2u+ln3u1+u2du=π2e+3π38e+1e0ln3u1+u2du=(4+3π2)π8e+1e3α3α=10uα11+u2du=(4+3π2)π8e+1e3α3α=1πsin(πα2)=(4+3π2)π8eπ8eα=1(3π2cosec2(πα2)cosec(πα2)cot(πα2)+π(cosec3(πα2)cot(πα2)+12cosec(πα2)cot3(πα2))=(4+3π2)π8e
Commented by mnjuly1970 last updated on 06/Aug/21
bravo mr brandon...
bravomrbrandonbravomrbrandon

Leave a Reply

Your email address will not be published. Required fields are marked *