Menu Close

solve-1-1-i-i-2-log-1-i-pii-




Question Number 131021 by mohammad17 last updated on 31/Jan/21
solve    (1):(1+i)^i     (2): log(1+i)^(πi)
solve(1):(1+i)i(2):log(1+i)πi
Answered by Dwaipayan Shikari last updated on 31/Jan/21
(1+i)^i =(√2) (e^((π/4)i) )^i =(cos(log((√2)))+isin(log((√2)))) e^(−(π/4))   πilog(1+i)=πilog((√2))−(π^2 /4)
(1+i)i=2(eπ4i)i=(cos(log(2))+isin(log(2)))eπ4πilog(1+i)=πilog(2)π24
Answered by mr W last updated on 31/Jan/21
(1)  (1+i)=(√2)e^((πi)/4) =e^(ln (√2)+((πi)/4))   (1+i)^i =e^((ln (√2)+((πi)/4))i) =e^(−(π/4)) e^(i ln (√2))   =e^(−(π/4)) [cos (ln (√2))+i sin (ln (√2))]    (2)  ln (1+i)^(πi) =πi ln [e^(ln (√2)+((πi)/4)) ]  =πi(ln (√2)+((πi)/4))  =π(−(π/4)+i ln (√2))
(1)(1+i)=2eπi4=eln2+πi4(1+i)i=e(ln2+πi4)i=eπ4eiln2=eπ4[cos(ln2)+isin(ln2)](2)ln(1+i)πi=πiln[eln2+πi4]=πi(ln2+πi4)=π(π4+iln2)

Leave a Reply

Your email address will not be published. Required fields are marked *