Menu Close

solve-1-e-x-y-y-e-x-1-x-2-




Question Number 90968 by abdomathmax last updated on 27/Apr/20
solve (1+e^x )y^′ −y =(e^x /(1+x^2 ))
solve(1+ex)yy=ex1+x2
Commented by niroj last updated on 27/Apr/20
    (1+e^x )y^′ −y= (e^x /(1+x^2 ))      (dy/dx)−(1/(1+e^x ))y = (e^x /((1+e^x )(1+x^2 )))    P= −(1/(1+e^x )) , Q= (e^x /((1+e^x )(1+x^2 )))     IF= e^(∫Pdx) = e^(−∫(1/(1+e^x ))dx)      −∫ (1/(e^x (e^(−x) +1)))dx      −∫((  e^(−x) dx)/(e^(−x) +1))    put e^(−x) +1=t      −e^(−x) dx=dt    ∫ (1/t)dt=logt =log (e^(−x) +1)    IF= e^(log(e^(−x) +1)) = e^(−x) +1    we know,    y.IF=∫IF.Qdx+C     y.(e^(−x) +1)= ∫ (e^(−x) +1).(e^x /((1+e^x )(1+x^2 )))dx+C   y ((1/e^x )+1)=∫ (((1+e^x ))/e^x ).(e^x /((1+e^x )(1+x^2 )))dx+C   ((y(1+e^x ))/e^x )=∫(( 1)/(1+x^2 ))dx +C   y= ((e^x (tan^(−1) x+C))/((1+e^x )))//.
(1+ex)yy=ex1+x2dydx11+exy=ex(1+ex)(1+x2)P=11+ex,Q=ex(1+ex)(1+x2)IF=ePdx=e11+exdx1ex(ex+1)dxexdxex+1putex+1=texdx=dt1tdt=logt=log(ex+1)IF=elog(ex+1)=ex+1weknow,y.IF=IF.Qdx+Cy.(ex+1)=(ex+1).ex(1+ex)(1+x2)dx+Cy(1ex+1)=(1+ex)ex.ex(1+ex)(1+x2)dx+Cy(1+ex)ex=11+x2dx+Cy=ex(tan1x+C)(1+ex)//.
Commented by mathmax by abdo last updated on 28/Apr/20
(he)→(1+e^x )y^′ −y =0 ⇒(y^′ /y) =(1/(1+e^x )) ⇒ln∣y∣=∫  (dx/(1+e^x )) +c  =_(e^x =t)   ∫  (dt/(t(1+t))) =∫((1/t)−(1/(1+t)))dt +c =ln∣(t/(1+t))∣ +c =ln∣(e^x /(1+e^x ))∣ +c  y(x)=k×(e^x /(1+e^x )) let use mvc method →y^′ =k^′  (e^x /(1+e^x ))  +k×(e^x /((1+e^x )^2 ))  (e)⇒k^′  e^x   +((ke^x )/(1+e^x ))−((ke^x )/(1+e^x )) =(e^x /(1+x^2 )) ⇒k^′  =(1/(1+x^2 )) ⇒k(x) =arctanx +c  the general solution is  y(x)=(e^x /(1+e^x ))k(x) =(e^x /(1+e^x ))(arctanx +c)
(he)(1+ex)yy=0yy=11+exlny∣=dx1+ex+c=ex=tdtt(1+t)=(1t11+t)dt+c=lnt1+t+c=lnex1+ex+cy(x)=k×ex1+exletusemvcmethody=kex1+ex+k×ex(1+ex)2(e)kex+kex1+exkex1+ex=ex1+x2k=11+x2k(x)=arctanx+cthegeneralsolutionisy(x)=ex1+exk(x)=ex1+ex(arctanx+c)

Leave a Reply

Your email address will not be published. Required fields are marked *