Menu Close

Solve-1-pi-1-2-ln-1-x-dx-




Question Number 115026 by jm2bok last updated on 23/Sep/20
Solve:  ∫_(1/π) ^(1/2) ln ⌊(1/x)⌋dx
Solve:1/π1/2ln1xdx
Answered by PRITHWISH SEN 2 last updated on 23/Sep/20
when       (1/π)≤x≤(1/3) ⇒ 3≤(1/x)≤π ⇒ln⌊(1/x)⌋=ln3       (1/3)<x≤(1/2)⇒ 2≤x<3⇒ln⌊(1/x)⌋=ln2  ∴ the integration    = ∫_(1/π) ^(1/3) ln(3)dx +∫_(1/3) ^(1/2)  ln(2)dx  = ((1/3)−(1/π))ln3+((1/2)−(1/3))ln2 ∽ 0.13202947375
when1πx1331xπln1x=ln313<x122x<3ln1x=ln2theintegration=1π13ln(3)dx+1312ln(2)dx=(131π)ln3+(1213)ln20.13202947375
Answered by mathmax by abdo last updated on 23/Sep/20
I =∫_(1/π) ^(1/2)  ln{[(1/x)]}dx  we do the changement (1/x)=t ⇒  I =∫_π ^2  ln{[t]}(−(dt/t^2 )) =∫_2 ^π  ((ln[t])/t^2 ) dt         (π∼3,14) ⇒  I =∫_2 ^3 ((ln[t])/t^2 )dt +∫_3 ^π  ((ln[t])/t^2 )dt =2 ∫_2 ^3  (dt/t^2 ) +3 ∫_3 ^π  (dt/t^2 )  =2[−(1/t)]_2 ^3  +3[−(1/t)]_3 ^π  =2((1/2)−(1/3)) +3((1/3)−(1/π))  =1−(2/3) +1−(3/π) =2−(2/3)−(3/π) =(4/3)−(3/π)
I=1π12ln{[1x]}dxwedothechangement1x=tI=π2ln{[t]}(dtt2)=2πln[t]t2dt(π3,14)I=23ln[t]t2dt+3πln[t]t2dt=223dtt2+33πdtt2=2[1t]23+3[1t]3π=2(1213)+3(131π)=123+13π=2233π=433π

Leave a Reply

Your email address will not be published. Required fields are marked *