Solve-1-pi-1-2-ln-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 115026 by jm2bok last updated on 23/Sep/20 Solve:∫1/π1/2ln⌊1x⌋dx Answered by PRITHWISH SEN 2 last updated on 23/Sep/20 when1π⩽x⩽13⇒3⩽1x⩽π⇒ln⌊1x⌋=ln313<x⩽12⇒2⩽x<3⇒ln⌊1x⌋=ln2∴theintegration=∫1π13ln(3)dx+∫1312ln(2)dx=(13−1π)ln3+(12−13)ln2∽0.13202947375 Answered by mathmax by abdo last updated on 23/Sep/20 I=∫1π12ln{[1x]}dxwedothechangement1x=t⇒I=∫π2ln{[t]}(−dtt2)=∫2πln[t]t2dt(π∼3,14)⇒I=∫23ln[t]t2dt+∫3πln[t]t2dt=2∫23dtt2+3∫3πdtt2=2[−1t]23+3[−1t]3π=2(12−13)+3(13−1π)=1−23+1−3π=2−23−3π=43−3π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-rocket-of-mass-1000kg-containing-a-propellant-gas-of-3000kg-is-to-be-launched-vertically-If-the-fuel-is-consumed-at-a-steady-rate-of-60kg-s-Calculate-the-least-velocith-of-the-exhaust-gases-if-the-Next Next post: pi-2-pi-2-sec-x-cos-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.