Menu Close

solve-1-x-1-y-1-z-3-4-with-x-y-z-N-




Question Number 118322 by mr W last updated on 16/Oct/20
solve  (1/x)+(1/y)+(1/z)=(3/4)  with x,y,z∈N
solve1x+1y+1z=34withx,y,zN
Commented by malwaan last updated on 17/Oct/20
((yz+xz+xy)/(xyz)) = (3/4) (x≠0;y≠0;z≠0)  1) x = y = z  ⇒((3x^2 )/x^3 ) = (3/4)⇒(3/x) = (3/4)  ⇒x=y=z=4  2)  if x=1⇒(1/y) + (1/z)=−(1/4){wrong}  so x>1 ; y>1 ;z>1  3) x=2⇒(1/y) + (1/z) = (1/4)  ⇒y=8 ; z=8  4) x=3⇒(1/y) + (1/z) = (5/(12))  ((y+z)/(yz)) = (5/(12)){no solutions}  so x≠3 ; y≠3 ; z≠3
yz+xz+xyxyz=34(x0;y0;z0)1)x=y=z3x2x3=343x=34x=y=z=42)ifx=11y+1z=14{wrong}sox>1;y>1;z>13)x=21y+1z=14y=8;z=84)x=31y+1z=512y+zyz=512{nosolutions}sox3;y3;z3
Commented by MJS_new last updated on 17/Oct/20
with x≤y≤z I found these triples  2 5 20  2 6 12  2 8 8  3 3 12  3 4 6  4 4 4
withxyzIfoundthesetriples252026122883312346444
Answered by TANMAY PANACEA last updated on 16/Oct/20
x=y=z=4  x=2  y=z=8  it is not solution..by trial
x=y=z=4x=2y=z=8itisnotsolution..bytrial
Answered by 1549442205PVT last updated on 17/Oct/20
(1/x)+(1/y)+(1/z)=(3/4)(1)  Since x,y,z have equal role in the equality  ,WLOG we can assume that x≥y≥z>1  Then (1/x)≤(1/y)≤(1/z)<1.Hence  (3/4)=(1/x)+(1/y)+(1/z)≤(3/z)⇒z≤4  i)For z=4 substituting into (1) we get  (2/y)≥(1/x)+(1/y)=(1/2)(2)⇒y≤4⇒y∈{1,2,3,4}  •For y=4 substituting into(2)we get  (1/x)=(1/2)−(1/4)=(1/4)⇒x=4  •For y=3 substituting into(2)we get  (1/x)=(1/2)−(1/3)=(1/6)⇒x=6  •For y∈{1,2}substituting into(2)we   get L.H.S (2)>(1/2)⇒has no roots  ii)For z=3  substituting into(1)we get  (2/y)≥(1/x)+(1/y)=(3/4)−(1/3)=(5/(12))(3)⇒5y≤24.  Since y∈N⇒y∈{1,2,3,4}  •For y=4 substituting into(3)we get  (1/x)=(5/(12))−(1/4)=(2/(12))=(1/6)⇒x=6  •For y=3 substituting into(3)we get  (1/x)=(5/(12))−(1/3)=(1/(12))⇒x=12  •For y∈{1,2}substituting into(3)we  get L.H.S (3)>(5/(12))⇒has no roots  iii)For z=2substituting into(1)we get  (2/y)≥(1/x)+(1/y)=(3/4)−(1/2)=(1/4)(4)⇒y≤8  •For y=8 substituting into(4)we get  (1/x)=(1/4)−(1/8)=(1/8)⇒x=8  •For y=7 substituting into(4)we get  (1/x)=(1/4)−(1/7)=(3/(28))⇒3x=28⇒x∉N   •For y=6 substituting into(4)we get  (1/x)=(1/4)−(1/6)=(1/(12))⇒x=12  •For y=5 substituting into(4)we get  (1/x)=(1/4)−(1/5)=(1/(20))⇒x=20  •For y∈{1,2,3,4} substituting into(4)  we get L.H.S(4)>(1/4)⇒has no roots  Combining three above cases we obtain  6  roots are:  (x,y,z)∈{(4,4,4),(6,4,3),(12,3,3)  (8,8,2),(12,6,2),(20,5,2)}(∗)  Consequently,the equation    (1/x)+(1/y)+(1/z)=(3/4) has 3.3!+2.((3!)/2)+1=25   roots (x,y,z).They are elements of  (∗)  and all their permutation
1x+1y+1z=34(1)Sincex,y,zhaveequalroleintheequality,WLOGwecanassumethatxyz>1Then1x1y1z<1.Hence34=1x+1y+1z3zz4i)Forz=4substitutinginto(1)weget2y1x+1y=12(2)y4y{1,2,3,4}Fory=4substitutinginto(2)weget1x=1214=14x=4Fory=3substitutinginto(2)weget1x=1213=16x=6Fory{1,2}substitutinginto(2)wegetL.H.S(2)>12hasnorootsii)Forz=3substitutinginto(1)weget2y1x+1y=3413=512(3)5y24.SinceyNy{1,2,3,4}Fory=4substitutinginto(3)weget1x=51214=212=16x=6Fory=3substitutinginto(3)weget1x=51213=112x=12Fory{1,2}substitutinginto(3)wegetL.H.S(3)>512hasnorootsiii)Forz=2substitutinginto(1)weget2y1x+1y=3412=14(4)y8Fory=8substitutinginto(4)weget1x=1418=18x=8Fory=7substitutinginto(4)weget1x=1417=3283x=28xNFory=6substitutinginto(4)weget1x=1416=112x=12Fory=5substitutinginto(4)weget1x=1415=120x=20Fory{1,2,3,4}substitutinginto(4)wegetL.H.S(4)>14hasnorootsCombiningthreeabovecasesweobtain6rootsare:(x,y,z){(4,4,4),(6,4,3),(12,3,3)(8,8,2),(12,6,2),(20,5,2)}()Consequently,theequation1x+1y+1z=34has3.3!+2.3!2+1=25roots(x,y,z).Theyareelementsof()andalltheirpermutation
Commented by mr W last updated on 17/Oct/20
thank you all sirs!
thankyouallsirs!

Leave a Reply

Your email address will not be published. Required fields are marked *