Menu Close

solve-1-x-2-dy-dx-xy-xy-2-




Question Number 97001 by bemath last updated on 06/Jun/20
solve (1+x^2 ) (dy/dx) = xy−xy^2
solve(1+x2)dydx=xyxy2
Commented by bobhans last updated on 06/Jun/20
(dy/dx) = ((x(y−y^2 ))/(x^2 +1)) ⇔ (dy/(y−y^2 )) = ((x dx)/(x^2 +1))  (dy/(y(1−y))) = ((d(x^2 +1))/(2(x^2 +1))) ⇔ ((y+1−y)/(y(1−y))) dy = (1/2)ln(x^2 +1) + c  ∫ (dy/y) + ∫ (dy/(1−y)) = (1/2)lnC(x^2 +1)  ln∣(y/(1−y))∣ = ln(√(C(x^2 +1))) ⇔ ∣(y/(1−y))∣ = (√(C(x^2 +1)))
dydx=x(yy2)x2+1dyyy2=xdxx2+1dyy(1y)=d(x2+1)2(x2+1)y+1yy(1y)dy=12ln(x2+1)+cdyy+dy1y=12lnC(x2+1)lny1y=lnC(x2+1)y1y=C(x2+1)
Commented by bemath last updated on 06/Jun/20
thanks
thanks
Answered by mathmax by abdo last updated on 06/Jun/20
e⇒(dy/(xy−xy^2 )) =(dx/(1+x^2 )) ⇒(dy/(y−y^2 )) =((xdx)/(1+x^2 )) ⇒  ∫ (dy/(y−y^2 )) =∫ ((xdx)/(1+x^2 )) =(1/2)ln(1+x^2 ) but  ∫ (dy/(y−y^2 )) =−∫ (dy/(y(y−1))) =−∫((1/(y−1))−(1/y))dy =∫((1/y)−(1/(y−1)))dy  =ln∣(y/(y−1))∣ ⇒ln∣(y/(y−1))∣ =ln(√(1+x^2 )) +c ⇒∣(y/(y−1))∣ =k (√(1+x^2 )) ⇒  (y/(y−1)) =k(√(1+x^2 )) ⇒((y−1+1)/(y−1)) =k(√(1+x^2 )) ⇒1+(1/(y−1)) =k(√(1+x^2 )) ⇒  (1/(y−1)) =k(√(1+x^2 ))−1 ⇒y−1 =(1/(k(√(1+x^2 ))−1)) ⇒y =1+(1/(k(√(1+x^2 ))−1))
edyxyxy2=dx1+x2dyyy2=xdx1+x2dyyy2=xdx1+x2=12ln(1+x2)butdyyy2=dyy(y1)=(1y11y)dy=(1y1y1)dy=lnyy1lnyy1=ln1+x2+c⇒∣yy1=k1+x2yy1=k1+x2y1+1y1=k1+x21+1y1=k1+x21y1=k1+x21y1=1k1+x21y=1+1k1+x21

Leave a Reply

Your email address will not be published. Required fields are marked *