Menu Close

solve-1-x-2-y-xy-1-x-2-




Question Number 90963 by abdomathmax last updated on 27/Apr/20
solve (1+x^2 )y^′  +xy =(√(1+x^2 ))
solve(1+x2)y+xy=1+x2
Commented by niroj last updated on 27/Apr/20
   (1+x^2 )y^′  +xy = (√(1+x^2 ))        (dy/dx)+(x/(1+x^2 ))y= ((√(1+x^2 ))/(1+x^2 ))        (dy/dx) + (x/(1+x^2 )) y= (1/( (√(1+x^2 ))))       form (dy/dx)+Py=Q    let, P= (x/(1+x^2 )) ,  Q= (1/( (√(1+x^2 ))))        IF= e^(∫Pdx) = e^(∫(( x)/(1+x^2 ))dx)    Put, x^2 +1=t    2xdx=dt        xdx=(dt/2)    IF=e^(∫(1/t).(dt/2)) =e^((1/2)log t) =e^(log(√t))    ∴ IF=(√t)  =(√(1+x^2 ))      Complete solution    y.IF= ∫IF.Qdx+c    y(√(1+x^2 ))= ∫ (√(1+x^2 )) .(1/( (√(1+x^2 ))))dx+C    y(√(1+x^2 )) =∫dx+C    y =  (1/( (√(1+x^2 ))))(x+C)//.
(1+x2)y+xy=1+x2dydx+x1+x2y=1+x21+x2dydx+x1+x2y=11+x2formdydx+Py=Qlet,P=x1+x2,Q=11+x2IF=ePdx=ex1+x2dxPut,x2+1=t2xdx=dtxdx=dt2IF=e1t.dt2=e12logt=elogtIF=t=1+x2Completesolutiony.IF=IF.Qdx+cy1+x2=1+x2.11+x2dx+Cy1+x2=dx+Cy=11+x2(x+C)//.
Commented by mathmax by abdo last updated on 27/Apr/20
(he)→(1+x^2 )y^′  +xy =0⇒(1+x^2 )y^′  =−xy ⇒(y^′ /y)=−(x/(1+x^2 )) ⇒  ln∣y∣ =−(1/2)ln(1+x^2 )+c ⇒y(x)=(K/( (√(1+x^2 ))))  let use mvc method  y^′  =(K^′ /( (√(1+x^2 )))) +K(−(1/2)(2x)(1+x^2 )^(−(3/2)) ) =(K^′ /( (√(1+x^2 ))))−Kx(1+x^2 )^(−(3/2))   (e)⇒(√(1+x^2 ))K^′ −((Kx)/( (√(1+x^2 )))) +((xK)/( (√(1+x^2 ))))=(√(1+x^2 )) ⇒  K^′ =1 ⇒K(x) =x+λ ⇒y(x) =((x+λ)/( (√(1+x^2 ))))   (λ ∈R)
(he)(1+x2)y+xy=0(1+x2)y=xyyy=x1+x2lny=12ln(1+x2)+cy(x)=K1+x2letusemvcmethody=K1+x2+K(12(2x)(1+x2)32)=K1+x2Kx(1+x2)32(e)1+x2KKx1+x2+xK1+x2=1+x2K=1K(x)=x+λy(x)=x+λ1+x2(λR)
Answered by john santu last updated on 27/Apr/20
y′ +((x/(1+x^2 )))y = (1/( (√(1+x^2 ))))  Integrating factor  ⇒∫ p(x) dx = ∫ (x/(1+x^2 )) dx   ∫ p(x) dx = (1/2)∫  ((d(1+x^2 ))/(1+x^2 )) = ln (√(1+x^2 ))  u(x) = e^(∫ p(x) dx)  = (√(1+x^2 ))  solution   y = ((∫ u(x).q(x) dx +C)/(u(x)))  y = ((∫ (√(1+x^2 )) ((1/( (√(1+x^2 ))))) dx+C)/( (√(1+x^2 ))))  y = ((x+C)/( (√(1+x^2 )))) .
y+(x1+x2)y=11+x2Integratingfactorp(x)dx=x1+x2dxp(x)dx=12d(1+x2)1+x2=ln1+x2u(x)=ep(x)dx=1+x2solutiony=u(x).q(x)dx+Cu(x)y=1+x2(11+x2)dx+C1+x2y=x+C1+x2.

Leave a Reply

Your email address will not be published. Required fields are marked *