Question Number 86657 by john santu last updated on 30/Mar/20
$$\mathrm{solve}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)\mathrm{dy}\:−\mathrm{x}^{\mathrm{2}} \:\mathrm{y}\:\mathrm{dx}=\mathrm{0} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)\:=\:\mathrm{2} \\ $$
Answered by jagoll last updated on 30/Mar/20
$$\int\:\frac{\mathrm{dy}}{\mathrm{y}}\:=\:\int\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx} \\ $$$$\mathrm{ln}\:\mathrm{y}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{lnC}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)\:=\:\mathrm{ln}\sqrt[{\mathrm{3}\:\:}]{\mathrm{C}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)} \\ $$$$\mathrm{y}\:=\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{C}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)\:=\:\mathrm{2}\:\Rightarrow\:\mathrm{2}\:=\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2C}} \\ $$$$\mathrm{8}\:=\:\mathrm{2C}\:\Rightarrow\mathrm{C}\:=\:\mathrm{4} \\ $$$$\therefore\:\mathrm{y}\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{4}+\mathrm{4x}^{\mathrm{3}} } \\ $$
Commented by john santu last updated on 30/Mar/20
$$\mathrm{joosss} \\ $$