Menu Close

solve-1-x-3-x-4-




Question Number 155951 by mnjuly1970 last updated on 06/Oct/21
         solve  :         ⌊ (1/x) ⌋ + ⌊ (3/x) ⌋= 4
$$ \\ $$$$\:\:\:\:\:\:\:{solve}\:\:: \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:\frac{\mathrm{1}}{{x}}\:\rfloor\:+\:\lfloor\:\frac{\mathrm{3}}{{x}}\:\rfloor=\:\mathrm{4}\: \\ $$$$ \\ $$
Answered by mr W last updated on 06/Oct/21
let t=(1/x)  ⌊t⌋+⌊3t⌋=4  let t=n+f with 0≤f<1  n+3n+⌊3f⌋=4  4n+⌊3f⌋=4  case 0≤f<(1/3):  4n+0=4 ⇒n=1 ⇒1≤t<(4/3)  case (1/3)≤f<(2/3):  4n+1=4 ⇒no solution!  case (2/3)≤f<1:  4n+2=4 ⇒no solution!    only solution is 1≤t<(4/3)  i.e. 1≤(1/x)<(4/3)  ⇒(3/4)<x≤1
$${let}\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$$\lfloor{t}\rfloor+\lfloor\mathrm{3}{t}\rfloor=\mathrm{4} \\ $$$${let}\:{t}={n}+{f}\:{with}\:\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$${n}+\mathrm{3}{n}+\lfloor\mathrm{3}{f}\rfloor=\mathrm{4} \\ $$$$\mathrm{4}{n}+\lfloor\mathrm{3}{f}\rfloor=\mathrm{4} \\ $$$${case}\:\mathrm{0}\leqslant{f}<\frac{\mathrm{1}}{\mathrm{3}}: \\ $$$$\mathrm{4}{n}+\mathrm{0}=\mathrm{4}\:\Rightarrow{n}=\mathrm{1}\:\Rightarrow\mathrm{1}\leqslant{t}<\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${case}\:\frac{\mathrm{1}}{\mathrm{3}}\leqslant{f}<\frac{\mathrm{2}}{\mathrm{3}}: \\ $$$$\mathrm{4}{n}+\mathrm{1}=\mathrm{4}\:\Rightarrow{no}\:{solution}! \\ $$$${case}\:\frac{\mathrm{2}}{\mathrm{3}}\leqslant{f}<\mathrm{1}: \\ $$$$\mathrm{4}{n}+\mathrm{2}=\mathrm{4}\:\Rightarrow{no}\:{solution}! \\ $$$$ \\ $$$${only}\:{solution}\:{is}\:\mathrm{1}\leqslant{t}<\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${i}.{e}.\:\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}<\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{4}}<{x}\leqslant\mathrm{1} \\ $$
Commented by mnjuly1970 last updated on 06/Oct/21
grateful  sir W
$${grateful}\:\:{sir}\:\mathcal{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *