Question Number 86837 by M±th+et£s last updated on 31/Mar/20
$${solve} \\ $$$$\left.\mathrm{1}\right)\sqrt{{xy}}\:\frac{{dy}}{{dx}}=\mathrm{1} \\ $$$$\left.\mathrm{2}\right){e}^{{y}} \:{sec}\left({x}\right){dx}+{cos}\left({x}\right){dy}=\mathrm{0} \\ $$
Answered by TANMAY PANACEA. last updated on 31/Mar/20
$$\left.\mathrm{1}\right)\sqrt{{y}}\:{dy}=\frac{{dx}}{\:\sqrt{{x}}} \\ $$$$\frac{{y}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}=\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\frac{\mathrm{1}}{\mathrm{2}}}+{c} \\ $$$$\left.\mathrm{2}\right){sec}^{\mathrm{2}} {xdx}+{e}^{−{y}} {dy}={dc} \\ $$$${tanx}+\frac{{e}^{−{y}} }{−\mathrm{1}}={c} \\ $$
Commented by M±th+et£s last updated on 31/Mar/20
$${thank}\:{you}\:{sir} \\ $$
Commented by TANMAY PANACEA. last updated on 31/Mar/20
$${most}\:{wrlcome} \\ $$