Menu Close

solve-109x-103y-5-for-x-y-are-integer-




Question Number 102588 by bobhans last updated on 10/Jul/20
solve 109x +103y = 5 for x,y are integer
solve109x+103y=5forx,yareinteger
Commented by mr W last updated on 10/Jul/20
see Q44819
seeQ44819
Commented by mr W last updated on 10/Jul/20
see also Q19198
seealsoQ19198
Commented by bobhans last updated on 10/Jul/20
coll sir
collsir
Answered by 1549442205 last updated on 10/Jul/20
y=((5−109x)/(103))=((5−6x)/(103))−x.Put ((5−6x)/(103))=a(a∈Z)  ⇒5−6x=103a⇔x=((5−103a)/6)=−17a+((5−a)/6)  Put ((5−a)/6)=b⇒a=5−6b.From this we  get x=−17a+b=103b−85,y=−x+a  =−109b+90.Thus,the roots of eqs be   { ((x=103b−85)),((y=−109b+90)) :}(b∈Z)
y=5109x103=56x103x.Put56x103=a(aZ)56x=103ax=5103a6=17a+5a6Put5a6=ba=56b.Fromthiswegetx=17a+b=103b85,y=x+a=109b+90.Thus,therootsofeqsbe{x=103b85y=109b+90(bZ)
Answered by bemath last updated on 10/Jul/20
 { ((109=1(103)+6)),((103=17(6)+1)) :}   { ((103−17(6)=1)),((103−17(109−103) =1)) :}  ⇔109(−17)+103(18)=1...(×5)  109(−85)+103(90) = 5  we get generall solution  x=−85 +103n  y = 90−109n , n∈Z
{109=1(103)+6103=17(6)+1{10317(6)=110317(109103)=1109(17)+103(18)=1(×5)109(85)+103(90)=5wegetgenerallsolutionx=85+103ny=90109n,nZ
Answered by PRITHWISH SEN 2 last updated on 10/Jul/20
109x+103y=5    It is a diophantine equation  ∵ gcd(109,103)=1  then there exists two integers u and v such that  109u+103v=1  here u=−85 amd v=90  then 109x+103y=−109.85+103.90  ⇒109(x+85)=−103(y−90)  ((x+85)/(−103)) = ((y−90)/(109))  = t (integer)    ∵ gcd(109,103)=1 then103∣(x+85) and 109∣(y−90)  ∴ x =−103t−85       y = 109t+90
109x+103y=5Itisadiophantineequationgcd(109,103)=1thenthereexiststwointegersuandvsuchthat109u+103v=1hereu=85amdv=90then109x+103y=109.85+103.90109(x+85)=103(y90)x+85103=y90109=t(integer)gcd(109,103)=1then103(x+85)and109(y90)x=103t85y=109t+90
Answered by bobhans last updated on 10/Jul/20
well has 2 solution??
wellhas2solution??

Leave a Reply

Your email address will not be published. Required fields are marked *