Menu Close

solve-12-x-2-4-x-find-x-




Question Number 171743 by Mikenice last updated on 20/Jun/22
solve: 12^(x−2) =4^x , find x
$${solve}:\:\mathrm{12}^{{x}−\mathrm{2}} =\mathrm{4}^{{x}} ,\:{find}\:{x} \\ $$
Commented by kaivan.ahmadi last updated on 20/Jun/22
3^(x−2) ×4^(x−2) =4^x ⇒3^(x−2) =(4^x /4^(x−2) )⇒  3^(x−2) =4^2 =16⇒log3^(x−2) =log16⇒  (x−2)log3=log16⇒x=((log16)/(log3))+2=  2+log_3 16=2+4log_3 2
$$\mathrm{3}^{{x}−\mathrm{2}} ×\mathrm{4}^{{x}−\mathrm{2}} =\mathrm{4}^{{x}} \Rightarrow\mathrm{3}^{{x}−\mathrm{2}} =\frac{\mathrm{4}^{{x}} }{\mathrm{4}^{{x}−\mathrm{2}} }\Rightarrow \\ $$$$\mathrm{3}^{{x}−\mathrm{2}} =\mathrm{4}^{\mathrm{2}} =\mathrm{16}\Rightarrow{log}\mathrm{3}^{{x}−\mathrm{2}} ={log}\mathrm{16}\Rightarrow \\ $$$$\left({x}−\mathrm{2}\right){log}\mathrm{3}={log}\mathrm{16}\Rightarrow{x}=\frac{{log}\mathrm{16}}{{log}\mathrm{3}}+\mathrm{2}= \\ $$$$\mathrm{2}+{log}_{\mathrm{3}} \mathrm{16}=\mathrm{2}+\mathrm{4}{log}_{\mathrm{3}} \mathrm{2} \\ $$
Commented by Mikenice last updated on 20/Jun/22
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *