Menu Close

Solve-1st-x-9-1-2nd-10x-1-gt-4-




Question Number 178600 by Acem last updated on 18/Oct/22
Solve 1st: ∣x−9∣≤ −1 , 2nd: ∣10x+1∣> −4
$${Solve}\:\mathrm{1}{st}:\:\mid{x}−\mathrm{9}\mid\leqslant\:−\mathrm{1}\:,\:\mathrm{2}{nd}:\:\mid\mathrm{10}{x}+\mathrm{1}\mid>\:−\mathrm{4} \\ $$
Answered by Acem last updated on 19/Oct/22
  1st: Impossible    2nd: x∈ R
$$ \\ $$$$\mathrm{1}{st}:\:{Impossible} \\ $$$$ \\ $$$$\mathrm{2}{nd}:\:{x}\in\:\mathbb{R} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 19/Oct/22
1)  ∣x−9∣≤ −1 Contradict to the definition.  2)  ∣10x+1∣> −4  ⇒ ∣10x+1∣≥ 0  ⇒x≥−(1/(10)) Ans
$$\left.\mathrm{1}\right) \\ $$$$\mid{x}−\mathrm{9}\mid\leqslant\:−\mathrm{1}\:{Contradict}\:{to}\:{the}\:{definition}. \\ $$$$\left.\mathrm{2}\right) \\ $$$$\mid\mathrm{10}{x}+\mathrm{1}\mid>\:−\mathrm{4} \\ $$$$\Rightarrow\:\mid\mathrm{10}{x}+\mathrm{1}\mid\geqslant\:\mathrm{0} \\ $$$$\Rightarrow{x}\geqslant−\frac{\mathrm{1}}{\mathrm{10}}\:\mathbb{A}\mathrm{ns} \\ $$
Commented by mr W last updated on 19/Oct/22
∣10x+1∣ is always ≥0>−4, so x can  be any value ∈R.
$$\mid\mathrm{10}{x}+\mathrm{1}\mid\:{is}\:{always}\:\geqslant\mathrm{0}>−\mathrm{4},\:{so}\:{x}\:{can} \\ $$$${be}\:{any}\:{value}\:\in{R}. \\ $$
Commented by Rasheed.Sindhi last updated on 19/Oct/22
Sorry for my mistake sir!
$${Sorry}\:{for}\:{my}\:{mistake}\:\boldsymbol{{sir}}!\: \\ $$
Commented by Acem last updated on 19/Oct/22
My friend, even if the qusetion was solving   ∣10x+1∣≥ 0 , it has two separeted solutions not only one   Either x≥ ((−1)/(10))      or    x≤ ((−1)/(10))
$${My}\:{friend},\:{even}\:{if}\:{the}\:{qusetion}\:{was}\:{solving} \\ $$$$\:\mid\mathrm{10}{x}+\mathrm{1}\mid\geqslant\:\mathrm{0}\:,\:{it}\:{has}\:{two}\:{separeted}\:{solutions}\:{not}\:{only}\:{one} \\ $$$$\:{Either}\:{x}\geqslant\:\frac{−\mathrm{1}}{\mathrm{10}}\:\:\:\:\:\:{or}\:\:\:\:{x}\leqslant\:\frac{−\mathrm{1}}{\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *