Menu Close

solve-2-x-4x-find-x-




Question Number 171771 by Mikenice last updated on 20/Jun/22
solve:  2^x =4x. find x
$${solve}: \\ $$$$\mathrm{2}^{{x}} =\mathrm{4}{x}.\:{find}\:{x} \\ $$
Answered by mathocean1 last updated on 20/Jun/22
S_R ={4}
$${S}_{\mathbb{R}} =\left\{\mathrm{4}\right\} \\ $$
Answered by mr W last updated on 20/Jun/22
e^(xln 2) =4x  (−xln 2)e^(−xln 2) =−((ln 2)/4)  −xln 2=W(−((ln 2)/4))  ⇒x=−((W(−((ln 2)/4)))/(ln 2))= { (4),((0.3099)) :}
$${e}^{{x}\mathrm{ln}\:\mathrm{2}} =\mathrm{4}{x} \\ $$$$\left(−{x}\mathrm{ln}\:\mathrm{2}\right){e}^{−{x}\mathrm{ln}\:\mathrm{2}} =−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}} \\ $$$$−{x}\mathrm{ln}\:\mathrm{2}={W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}=−\frac{{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{4}}\right)}{\mathrm{ln}\:\mathrm{2}}=\begin{cases}{\mathrm{4}}\\{\mathrm{0}.\mathrm{3099}}\end{cases} \\ $$
Commented by daus last updated on 21/Jun/22
how lambert function works?
$${how}\:{lambert}\:{function}\:{works}? \\ $$
Commented by mr W last updated on 21/Jun/22
Ae^A =B ⇒A=W(B)
$${Ae}^{{A}} ={B}\:\Rightarrow{A}={W}\left({B}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *