Menu Close

Solve-2-x-x-4-




Question Number 15570 by tawa tawa last updated on 11/Jun/17
Solve:   2^x  = x^4
Solve:2x=x4
Commented by tawa tawa last updated on 11/Jun/17
workings
workings
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17
Commented by mrW1 last updated on 12/Jun/17
the graph is much bigger than what  you display. there is a third zero  point on the right side.
thegraphismuchbiggerthanwhatyoudisplay.thereisathirdzeropointontherightside.
Commented by tawa tawa last updated on 12/Jun/17
God bless you sir.
Godblessyousir.
Answered by mrW1 last updated on 12/Jun/17
2^x =x^4   2^(x/4) =±x  e^((x/4)ln 2) =±x  ±1=xe^(−((xln 2)/4))   ∓((ln 2)/4)=(−((xln 2)/4))e^((−((xln 2)/4)))   ⇒−((xln 2)/4)=W(∓((ln 2)/4))  x=((W(∓((ln 2)/4)))/(−((ln 2)/4)))=((W(∓0.173287))/(−0.173287))  = { ((((−2.772589)/(−0.173287))=16)),((((−0.214811)/(−0.173287))=1.2396)),((((0.149260)/(−0.173287))=−0.8613)) :}
2x=x42x4=±xex4ln2=±x±1=xexln24ln24=(xln24)e(xln24)xln24=W(ln24)x=W(ln24)ln24=W(0.173287)0.173287={2.7725890.173287=160.2148110.173287=1.23960.1492600.173287=0.8613
Commented by tawa tawa last updated on 12/Jun/17
God bless you sir.
Godblessyousir.
Commented by Tinkutara last updated on 12/Jun/17
Sir, how do you calculate W(± 0.173287)?  Is there any method to calculate this  without calculator? How to find this  using Geogebra?
Sir,howdoyoucalculateW(±0.173287)?Isthereanymethodtocalculatethiswithoutcalculator?HowtofindthisusingGeogebra?
Commented by mrW1 last updated on 12/Jun/17
Normal calculators don′t have this  Lambert function. There are some  online calculators for W−function,  but most of them give only one value  for x<0.  With geogebra you can calculate  W−function value by yourself:  For example you want to calculate  W(−((ln 2)/4)). That is the root(s) of  f(x)=xe^x +((ln 2)/4).
NormalcalculatorsdonthavethisLambertfunction.TherearesomeonlinecalculatorsforWfunction,butmostofthemgiveonlyonevalueforx<0.WithgeogebrayoucancalculateWfunctionvaluebyyourself:ForexampleyouwanttocalculateW(ln24).Thatistheroot(s)off(x)=xex+ln24.
Commented by mrW1 last updated on 12/Jun/17
Commented by Tinkutara last updated on 12/Jun/17
Do you mean that in general if we  want W(n), these are the roots of  f(x) = xe^x  − n ?
DoyoumeanthatingeneralifwewantW(n),thesearetherootsoff(x)=xexn?
Commented by mrW1 last updated on 12/Jun/17
yes. this is the definition of W function.
yes.thisisthedefinitionofWfunction.
Commented by Tinkutara last updated on 12/Jun/17
Thanks Sir!
ThanksSir!
Commented by tawa tawa last updated on 12/Jun/17
logx^6  = (x/6)  6logx = x/6  36logx = x  x^(36)  = e^x   1 = x^(36)  e^(−x)   log ....  Sir, i have been thinking.  i have a question.   What is my aim in solving using lambert function.  Please give example as the number 1, i will use it to solve number 2.  my problem here is that i dont even have starting point.  Thank you sir. I want to learn it.  The starting point is my problem.   please do number 1 as example.
logx6=x66logx=x/636logx=xx36=ex1=x36exlog.Sir,ihavebeenthinking.ihaveaquestion.Whatismyaiminsolvingusinglambertfunction.Pleasegiveexampleasthenumber1,iwilluseittosolvenumber2.myproblemhereisthatidontevenhavestartingpoint.Thankyousir.Iwanttolearnit.Thestartingpointismyproblem.pleasedonumber1asexample.
Commented by tawa tawa last updated on 12/Jun/17
Please give me one question on this, let me solve it.
Pleasegivemeonequestiononthis,letmesolveit.
Commented by mrW1 last updated on 12/Jun/17
Solve x  (1)  log (x^6 )=(x/6)  (2)  log (x^3 )=(x/3)
Solvex(1)log(x6)=x6(2)log(x3)=x3
Commented by mrW1 last updated on 12/Jun/17
To be able to use Lambert function  we must re−arange the original  equation into following form:  A×e^A =B  wherein A is a expression with x and  B is a expression with constants only.  The solution is then  A=W(B)  Example 1: log x^6 =(x/6)  ⇒6log (±x)=(x/6)          (± because x can be + or −)  we consider +x at first  ⇒log (x)=(x/(36))  ⇒((ln x)/(ln 10))=(x/(36))  ⇒ln x=((ln 10)/(36))x  ⇒x=e^((ln 10 x)/(36))   ⇒xe^(−((ln 10 x)/(36))) =1  ⇒(−((ln 10 x)/(36)))e^(−((ln 10 x)/(36)) ) =−((ln 10)/(36))  this is the form A×e^A =B we need.  the solution is  −((ln 10 x)/(36))=W(−((ln 10)/(36)))  ⇒x=−((36)/(ln 10))×W(−((ln 10)/(36)))  we will get here 2 values for x, since  W(−((ln 10)/(36))) has 2 values.    similarly for the case −x we have  ⇒log (−x)=(x/(36))  ⇒((ln (−x))/(ln 10))=(x/(36))  ⇒ln (−x)=((ln 10)/(36))x  ⇒−x=e^((ln 10 x)/(36))   ⇒−xe^(−((ln 10 x)/(36))) =1  ⇒(−((ln 10 x)/(36)))e^(−((ln 10 x)/(36)) ) =((ln 10)/(36))  ⇒−((ln 10 x)/(36))=W(((ln 10)/(36)))  ⇒x=−((36)/(ln 10))×W(((ln 10)/(36)))  we will get here only one value for x.    All solutions are thus  x= { ((−((36)/(ln 10))×W(−((ln 10)/(36))) → 2 values)),((−((36)/(ln 10))×W(((ln 10)/(36))) → 1 value)) :}
TobeabletouseLambertfunctionwemustrearangetheoriginalequationintofollowingform:A×eA=BwhereinAisaexpressionwithxandBisaexpressionwithconstantsonly.ThesolutionisthenA=W(B)Example1:logx6=x66log(±x)=x6(±becausexcanbe+or)weconsider+xatfirstlog(x)=x36lnxln10=x36lnx=ln1036xx=eln10x36xeln10x36=1(ln10x36)eln10x36=ln1036thisistheformA×eA=Bweneed.thesolutionisln10x36=W(ln1036)x=36ln10×W(ln1036)wewillgethere2valuesforx,sinceW(ln1036)has2values.similarlyforthecasexwehavelog(x)=x36ln(x)ln10=x36ln(x)=ln1036xx=eln10x36xeln10x36=1(ln10x36)eln10x36=ln1036ln10x36=W(ln1036)x=36ln10×W(ln1036)wewillgethereonlyonevalueforx.Allsolutionsarethusx={36ln10×W(ln1036)2values36ln10×W(ln1036)1value
Commented by Tinkutara last updated on 12/Jun/17
In the last line how can we determine  that W(((−ln 10)/(36))) has 2 values while  W(((ln 10)/(36))) has one value? Can it be  without Geogebra?
InthelastlinehowcanwedeterminethatW(ln1036)has2valueswhileW(ln1036)hasonevalue?CanitbewithoutGeogebra?
Commented by mrW1 last updated on 12/Jun/17
W(x) is the inverse function of f(x)=xe^x   W(x) has only one value if x≥0  and 2 values if −(1/e)<x<0.
W(x)istheinversefunctionoff(x)=xexW(x)hasonlyonevalueifx0and2valuesif1e<x<0.
Commented by mrW1 last updated on 12/Jun/17
Commented by tawa tawa last updated on 12/Jun/17
2)  ln(x^3 ) = (x/3)  3ln(±x) = (x/3)  ln(±x) = (x/9)  ((ln(±x))/(ln(10))) = (x/9)  ln(±x) = ((xln(10))/9)  ± x = e^((xln(10))/9)   1 = ±xe^(−((xln(10))/9))   −((xln(10))/9)e^(−((xln(10))/9))  = −((ln10)/9)   −((xln(10))/9) = W[−((ln(10))/9)]   x  = − (9/(ln(10))) W[−((ln(10))/9)]  x =  − ((9(−0.3706))/(ln(10))) or x =  ((9(−2.110))/(ln(10)))
2)ln(x3)=x33ln(±x)=x3ln(±x)=x9ln(±x)ln(10)=x9ln(±x)=xln(10)9±x=exln(10)91=±xexln(10)9xln(10)9exln(10)9=ln109xln(10)9=W[ln(10)9]x=9ln(10)W[ln(10)9]x=9(0.3706)ln(10)orx=9(2.110)ln(10)
Commented by tawa tawa last updated on 12/Jun/17
God bless you sir.
Godblessyousir.
Commented by mrW1 last updated on 12/Jun/17
in question (1) in log x^6  x can be + or −,  thus log x^6 =6log (±x)  we have totally 3 solutions.    but in question (2) in log x^3  x must be +,  thus log x^3 =3log x  we have totally 2 solutions:  x=−(9/(ln 10))×W(−((ln 10)/9))
inquestion(1)inlogx6xcanbe+or,thuslogx6=6log(±x)wehavetotally3solutions.butinquestion(2)inlogx3xmustbe+,thuslogx3=3logxwehavetotally2solutions:x=9ln10×W(ln109)
Commented by tawa tawa last updated on 12/Jun/17
Thank you sir. i understand.
Thankyousir.iunderstand.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17
thank you so much dear mrW1.  it is very beautiful and useful.  god blees you master.
thankyousomuchdearmrW1.itisverybeautifulanduseful.godbleesyoumaster.

Leave a Reply

Your email address will not be published. Required fields are marked *