Menu Close

Solve-2cos-2-x-2-3cos-x-2-1-0-




Question Number 113191 by ZiYangLee last updated on 11/Sep/20
Solve 2cos^2 (x/2)+3cos(x/2)+1=0
$$\mathrm{Solve}\:\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+\mathrm{3cos}\frac{{x}}{\mathrm{2}}+\mathrm{1}=\mathrm{0} \\ $$
Answered by bobhans last updated on 11/Sep/20
2q^2 +3q+1 = 0 , where q = cos ((x/2))  (2q+1)(q+1)=0   { ((q=−(1/2)→cos ((x/2))=cos (120°))),((q=−1→cos ((x/2))=cos (180°))) :}
$$\mathrm{2q}^{\mathrm{2}} +\mathrm{3q}+\mathrm{1}\:=\:\mathrm{0}\:,\:\mathrm{where}\:\mathrm{q}\:=\:\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2q}+\mathrm{1}\right)\left(\mathrm{q}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{q}=−\frac{\mathrm{1}}{\mathrm{2}}\rightarrow\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{cos}\:\left(\mathrm{120}°\right)}\\{\mathrm{q}=−\mathrm{1}\rightarrow\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{cos}\:\left(\mathrm{180}°\right)}\end{cases} \\ $$
Commented by ZiYangLee last updated on 11/Sep/20
Tks.. But Can i know how to solve it with   general solution?
$$\mathrm{Tks}..\:\mathrm{But}\:\mathrm{Can}\:\mathrm{i}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{with}\: \\ $$$$\mathrm{general}\:\mathrm{solution}? \\ $$
Commented by john santu last updated on 11/Sep/20
recall cos x = cos α → x = ± α +k.2π , k∈Z
$${recall}\:\mathrm{cos}\:{x}\:=\:\mathrm{cos}\:\alpha\:\rightarrow\:{x}\:=\:\pm\:\alpha\:+{k}.\mathrm{2}\pi\:,\:{k}\in\mathbb{Z} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *