Question Number 87536 by M±th+et£s last updated on 04/Apr/20
$${solve}\: \\ $$$$\mid\mathrm{2}{x}−\mathrm{1}\mid=\mathrm{3}\lfloor{x}\rfloor+\mathrm{2}\left\{{x}\right\} \\ $$$$ \\ $$
Answered by mr W last updated on 05/Apr/20
$${x}={n}+\delta \\ $$$$\lfloor{x}\rfloor={n} \\ $$$$\left\{{x}\right\}=\delta \\ $$$$\mathrm{2}{x}−\mathrm{1}=\mathrm{2}{n}+\mathrm{2}\delta−\mathrm{1} \\ $$$$ \\ $$$${if}\:\mathrm{2}{x}−\mathrm{1}\geqslant\mathrm{0},\:{i}.{e}.\:{x}\geqslant\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$$\mathrm{2}{n}+\mathrm{2}\delta−\mathrm{1}=\mathrm{3}{n}+\mathrm{2}\delta \\ $$$$\Rightarrow\mathrm{2}{n}−\mathrm{1}=\mathrm{3}{n}\:\Rightarrow{n}=−\mathrm{1} \\ $$$$\Rightarrow\delta={any}\:{value}\:\mathrm{0}\leqslant\delta<\mathrm{0} \\ $$$$\Rightarrow−\mathrm{1}\leqslant{x}<\mathrm{0}\:\:\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$${if}\:\mathrm{2}{x}−\mathrm{1}<\mathrm{0},\:{i}.{e}.\:{x}<\frac{\mathrm{1}}{\mathrm{2}}: \\ $$$$−\mathrm{2}{n}−\mathrm{2}\delta+\mathrm{1}=\mathrm{3}{n}+\mathrm{2}\delta \\ $$$$\mathrm{5}{n}+\mathrm{4}\delta=\mathrm{1} \\ $$$$\mathrm{4}\delta\:{must}\:{be}\:{intger}. \\ $$$$\delta=\mathrm{0}:\:\mathrm{5}{n}=\mathrm{1}\:\Rightarrow{no}\:{solution} \\ $$$$\delta=\frac{\mathrm{1}}{\mathrm{4}}:\:\mathrm{5}{n}=\mathrm{0}\:\Rightarrow{n}=\mathrm{0}\:\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{4}}\:<\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{solution} \\ $$$$\delta=\frac{\mathrm{1}}{\mathrm{2}}:\:\mathrm{5}{n}=−\mathrm{1}\:\Rightarrow{no}\:{solution}\: \\ $$$$\delta=\frac{\mathrm{3}}{\mathrm{4}}:\:\mathrm{5}{n}=−\mathrm{2}\:\Rightarrow{no}\:{solution} \\ $$$$ \\ $$$$\Rightarrow{only}\:{solution}\:{is}\:{x}=\frac{\mathrm{1}}{\mathrm{4}}. \\ $$
Commented by M±th+et£s last updated on 05/Apr/20
$${thank}\:{you}\:{sir}\:{nice}\:{solution} \\ $$