Menu Close

Solve-2x-5-x-1-gt-8-




Question Number 21354 by Tinkutara last updated on 21/Sep/17
Solve : (√(2x + 5)) + (√(x − 1)) > 8
Solve:2x+5+x1>8
Commented by Tinkutara last updated on 22/Sep/17
Where is my mistake?  (√(2x+5))+(√(x−1))>8  2x+5+x−1+2(√((2x+5)(x−1)))>64  2(√((2x+5)(x−1)))>60−3x  4(2x+5)(x−1)>9(x−20)^2   8x^2 +12x−20>9x^2 −360x+3600  x^2 −372x+3620<0  (x−362)(x−10)<0  x∈(10,362)  Why not I am getting x∈(10,∞)?
Whereismymistake?2x+5+x1>82x+5+x1+2(2x+5)(x1)>642(2x+5)(x1)>603x4(2x+5)(x1)>9(x20)28x2+12x20>9x2360x+3600x2372x+3620<0(x362)(x10)<0x(10,362)WhynotIamgettingx(10,)?
Commented by alex041103 last updated on 22/Sep/17
Ok. First lets consider the folowing  Let  x<y  if we square both sides we get  x^2 <y^2 , but  x<y→−x>−y→(−x)^2 >(−y)^2   or x^2 >y^2 →contradiction.  Before we explore why this is a problem  let′s consider an easier case:  −x>2⇒x<−2(not >)  We know that we reverse the signs.  Squaring both sides of the inequality  is similar to multiplying both sides  by −1 (or taking the reciprical of both  sides).  So let′s consider the general case:  if g(x)≷h(x) then f(g(x)) ≷ or ≶ f(h(x)  for some function f(x)≠const.  Let s=sgn((d/dx)f(x))=const. for some  x∈I where [g(x),h(x)]∈I (suppose there  is such I), then    { ((f(g(x))≷f(h(x)), s=1)),((f(g(x))≶f(h(x)), s=−1)) :}  In conclusion we do reverse the inequality  g≷h if  (d/dx)f(x)<0 for x∈[g,h]  and we don′t if  (d/dx)f(x)>0 for x∈[g,h]  In our case of f(x)=x^2    sgn((d/dx)f(x))=sgn(x)  So in order to be even able to square  both sides the sign of both sides must  be the same.  In the case of  (√(2x+5))+(√(x−1))>8  for x∈[1,∞], sgn((√(2x+5))+(√(x−1)))=sgn(8)=1  ⇒ There is no problem in squaring   and we don′t reverse the inequality  But for 2(√((2x+5)(x−1)))>60−3x  sgn(LHS)=1 and sgn(60−3x)=1 or −1  When x∈(20,∞), sgn(60−3x)=−1  and then 0>60−3x and 2(√((2x+5)(x−1)))>0  ⇒x∈(20,∞) then 2(√((2x+5)(x−1)))>60−3x  When x∈(1, 20) (starting from one  in order for the square root to be real)  sgn(60−3x)=1  Then as in your solution  we see that for x∈(1,20),x∈(10,362)  or x∈[10,20](the ineq. is true for x=20,10)  ⇒Ans. x∈[10,∞)
Ok.FirstletsconsiderthefolowingLetx<yifwesquarebothsideswegetx2<y2,butx<yx>y(x)2>(y)2orx2>y2contradiction.Beforeweexplorewhythisisaproblemletsconsideraneasiercase:x>2x<2(not>)Weknowthatwereversethesigns.Squaringbothsidesoftheinequalityissimilartomultiplyingbothsidesby1(ortakingtherecipricalofbothsides).Soletsconsiderthegeneralcase:ifg(x)h(x)thenf(g(x))orf(h(x)forsomefunctionf(x)const.Lets=sgn(ddxf(x))=const.forsomexIwhere[g(x),h(x)]I(supposethereissuchI),then{f(g(x))f(h(x)),s=1f(g(x))f(h(x)),s=1Inconclusionwedoreversetheinequalityghifddxf(x)<0forx[g,h]andwedontifddxf(x)>0forx[g,h]Inourcaseoff(x)=x2sgn(ddxf(x))=sgn(x)Soinordertobeevenabletosquarebothsidesthesignofbothsidesmustbethesame.Inthecaseof2x+5+x1>8forx[1,],sgn(2x+5+x1)=sgn(8)=1ThereisnoprobleminsquaringandwedontreversetheinequalityButfor2(2x+5)(x1)>603xsgn(LHS)=1andsgn(603x)=1or1Whenx(20,),sgn(603x)=1andthen0>603xand2(2x+5)(x1)>0x(20,)then2(2x+5)(x1)>603xWhenx(1,20)(startingfromoneinorderforthesquareroottobereal)sgn(603x)=1Thenasinyoursolutionweseethatforx(1,20),x(10,362)orx[10,20](theineq.istrueforx=20,10)Ans.x[10,)
Commented by Tinkutara last updated on 22/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by alex041103 last updated on 22/Sep/17
Yes. Sorry about that.That′s becausd  (√(2x+5))+(√(x−1))=8 when x=10
Yes.Sorryaboutthat.Thatsbecausd2x+5+x1=8whenx=10

Leave a Reply

Your email address will not be published. Required fields are marked *