Question Number 46857 by maxmathsup by imad last updated on 01/Nov/18
$${solve}\:\mathrm{2}{x}\:{y}^{'} \:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:={xe}^{−{x}} \:\:\:{withy}\left({o}\right)=\mathrm{1}\: \\ $$
Commented by maxmathsup by imad last updated on 11/Nov/18
$$\left({he}\right)\:\Rightarrow\mathrm{2}{xy}^{'} \:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:=\mathrm{0}\:\Rightarrow\mathrm{2}{xy}^{'} =−\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}{x}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{x}}\:−\frac{{x}}{\mathrm{2}}\:\Rightarrow\int\:\frac{{y}^{'} }{{y}}{dx}\:=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{x}\mid−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+{k}\:\Rightarrow{ln}\mid{y}\mid={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mid{x}\mid}}\right)\:−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+{k}\:\Rightarrow \\ $$$${y}\:={K}\:\frac{{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} }{\:\sqrt{\mid{x}\mid}}\:\:{let}\:{suppose}\:{x}>\mathrm{0}\:\Rightarrow{y}={K}\:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:\:{mvc}\:{method}\:{give} \\ $$$${y}^{'} \:={K}^{'} \:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:+{K}\left(\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:−\frac{{x}}{\mathrm{2}}\:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \right) \\ $$$$=\left({K}^{'} \:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} −\frac{{K}}{\mathrm{2}}\:{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:−\frac{\sqrt{{x}}{K}}{\mathrm{2}}\:\right){e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\left({e}\right)\:\Leftrightarrow\:\mathrm{2}{x}\left({K}^{'} \:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:−\frac{{K}}{\mathrm{2}}\:{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:−\frac{{K}\sqrt{{x}}}{\mathrm{2}}\right){e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){Kx}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:={xe}^{−{x}} \:\Rightarrow \\ $$$$\mathrm{2}\sqrt{{x}}{K}^{'} \:−{Kx}^{−\frac{\mathrm{1}}{\mathrm{2}}} −{Kx}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{K}\:{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\:+{K}\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:={xe}^{−{x}} \:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:\Rightarrow \\ $$$${K}^{'} \:=\frac{{xe}^{−{x}} }{\mathrm{2}\sqrt{{x}}}\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:\Rightarrow{K}^{'} \:=\frac{\sqrt{{x}}{e}^{−{x}} }{\mathrm{2}}\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \:\Rightarrow\:{K}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\sqrt{{t}}{e}^{−{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{4}}} {dt}+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)=\frac{{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} }{\:\sqrt{{x}}}\:\left\{\:\int_{\mathrm{0}} ^{{x}} \sqrt{{t}}{e}^{−{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{4}}} {dt}\:+\lambda\right\} \\ $$$${y}\left(\mathrm{1}\right)=\mathrm{0}\:\Rightarrow{e}^{−\frac{\mathrm{1}}{\mathrm{4}}} \:\left\{\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{{t}}{e}^{\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−{t}} {dt}\:+\lambda\right\}=\mathrm{0}\:\Rightarrow\lambda=−\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{t}}{e}^{\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−{t}} {dt}\:\:\Rightarrow \\ $$$${y}\left({x}\right)=\frac{{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} }{\:\sqrt{{x}}}\:\int_{\mathrm{1}} ^{{x}} \sqrt{{t}}{e}^{\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−{t}} {dt}\:. \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 11/Nov/18
$${sorry}\:{the}\:{condition}\:{is}\:{y}\left(\mathrm{1}\right)=\mathrm{0}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Nov/18
$$\mathrm{2}{x}\frac{{dy}}{{dx}}+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}={xe}^{−{x}} \\ $$$$\frac{{dy}}{{dx}}+\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}{x}}.{y}=\frac{{e}^{−{x}} }{\mathrm{2}} \\ $$$${e}^{\int\left(\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{{x}}{\mathrm{2}}\right){dx}\:\:\:\leftarrow{intregating}\:{factor}} \\ $$$${e}^{\frac{\mathrm{1}}{\mathrm{2}}{lnx}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${e}^{{ln}\sqrt{{x}}\:} ×{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\sqrt{{x}}\:×{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\sqrt{{x}}\:×{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} ×\frac{{dy}}{{dx}}+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)×\sqrt{{x}}\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} ×\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{2}{x}}=\sqrt{{x}}\:×{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} ×\frac{{e}^{−{x}} }{\mathrm{2}} \\ $$$${wait}\:…{busy}.. \\ $$$$ \\ $$$$ \\ $$