Menu Close

solve-2yy-1-y-2-if-y-0-2-y-0-1-




Question Number 92041 by mhmd last updated on 04/May/20
solve :[  2yy′′=1+(y′)^2  ] if y(0)=2 , y′(0)=−1
$${solve}\::\left[\:\:\mathrm{2}{yy}''=\mathrm{1}+\left({y}'\right)^{\mathrm{2}} \:\right]\:{if}\:{y}\left(\mathrm{0}\right)=\mathrm{2}\:,\:{y}'\left(\mathrm{0}\right)=−\mathrm{1} \\ $$$$ \\ $$
Answered by mr W last updated on 04/May/20
(see also Q92040)    let u=y′  2yu(du/dy)=1+u^2   y((d(u^2 ))/dy)=1+u^2   y(dU/dy)=1+U  (dU/(1+U))=(dy/y)  ∫(dU/(1+U))=∫(dy/y)  ln (1+U)=ln C_1 y  ⇒1+U=C_1 y  ⇒U=((dy/dx))^2 =C_1 y−1  (dy/dx)=±(√(C_1 y−1))  −1=±(√(2C_1 −1))  ⇒C_1 =1  (dy/dx)=−(√(y−1))  (dy/( (√(y−1))))=−dx  ∫(dy/( (√(y−1))))=−∫dx  2(√(y−1))=−x+C_2   2(√(2−1))=−0+C_2   ⇒C_2 =2  2(√(y−1))=2−x  ⇒y=1+(((x−2)^2 )/4)
$$\left({see}\:{also}\:{Q}\mathrm{92040}\right) \\ $$$$ \\ $$$${let}\:{u}={y}' \\ $$$$\mathrm{2}{yu}\frac{{du}}{{dy}}=\mathrm{1}+{u}^{\mathrm{2}} \\ $$$${y}\frac{{d}\left({u}^{\mathrm{2}} \right)}{{dy}}=\mathrm{1}+{u}^{\mathrm{2}} \\ $$$${y}\frac{{dU}}{{dy}}=\mathrm{1}+{U} \\ $$$$\frac{{dU}}{\mathrm{1}+{U}}=\frac{{dy}}{{y}} \\ $$$$\int\frac{{dU}}{\mathrm{1}+{U}}=\int\frac{{dy}}{{y}} \\ $$$$\mathrm{ln}\:\left(\mathrm{1}+{U}\right)=\mathrm{ln}\:{C}_{\mathrm{1}} {y} \\ $$$$\Rightarrow\mathrm{1}+{U}={C}_{\mathrm{1}} {y} \\ $$$$\Rightarrow{U}=\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} ={C}_{\mathrm{1}} {y}−\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\pm\sqrt{{C}_{\mathrm{1}} {y}−\mathrm{1}} \\ $$$$−\mathrm{1}=\pm\sqrt{\mathrm{2}{C}_{\mathrm{1}} −\mathrm{1}} \\ $$$$\Rightarrow{C}_{\mathrm{1}} =\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=−\sqrt{{y}−\mathrm{1}} \\ $$$$\frac{{dy}}{\:\sqrt{{y}−\mathrm{1}}}=−{dx} \\ $$$$\int\frac{{dy}}{\:\sqrt{{y}−\mathrm{1}}}=−\int{dx} \\ $$$$\mathrm{2}\sqrt{{y}−\mathrm{1}}=−{x}+{C}_{\mathrm{2}} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}−\mathrm{1}}=−\mathrm{0}+{C}_{\mathrm{2}} \\ $$$$\Rightarrow{C}_{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{2}\sqrt{{y}−\mathrm{1}}=\mathrm{2}−{x} \\ $$$$\Rightarrow{y}=\mathrm{1}+\frac{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *