solve-3-x-2-y-2x-1-y-x-2-e-x-2- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 60695 by maxmathsup by imad last updated on 24/May/19 solve3+x2y″−(2x+1)y′=x2e−x2 Commented by maxmathsup by imad last updated on 27/May/19 lety′=zso(e)⇔3+x2z′−(2x+1)z=x2e−x2(he)→3+x2z′−(2x+1)z=0⇒3+x2z′=(2x+1)z⇒z′z=2x+1x2+3⇒ln∣z∣=∫2x+1x2+3dx+c=2∫xx2+3+∫dxx2+3+c=2x2+3+∫dxx2+3dx∫dxx2+3dx=x=3u∫3du31+u2=ln(u+1+u2)+c0=ln(x3+1+x23)+c0⇒ln∣z∣=2x2+3+ln(x3+1+x23)+c⇒z(x)=k(x3+1+x23)e2x2+3mvcmethodgivez′(x)=K′(x3+1+x23)e21+x23+K{(13+2x321+x23)e21+x23+(x3+1+x23)(22x3)11+x23e21+x23}=K′(x+3+x23)e233+x2+K{13+13+x2}e233+x2+4x3(x+3+x23)13+x2e233+x2….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-Im-iz-Re-z-Next Next post: Question-60697 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.